物質・エネルギー循環における役割
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/02/15 07:57 UTC 版)
「古細菌」の記事における「物質・エネルギー循環における役割」の解説
古細菌は、かつてメタン生成を除き、地球上の物質循環への影響は限定的と考えられてきた。しかし、難培養性の古細菌の研究が進むにつれ、地球規模の物質循環への寄与が無視できないものであることが明らかとなってきている。全体として見た場合、環境中の古細菌は、炭素や窒素、硫黄における物質循環の一部を構成している。 近年注目されているのは窒素循環への関与である。以前からメタン生成菌や好熱菌など一部の古細菌が窒素固定や硝酸塩呼吸を行うことは知られていたが、これらに加え、2005年にタウム古細菌がアンモニア酸化を行うことが発見された。メタゲノム解析は、アンモニアモノオキシゲナーゼを有すタウム古細菌(亜硝酸古細菌)が、海洋、土壌何れにおいてもアンモニア酸化細菌を遥かに上回ることまで示している。これにより、アンモニア酸化は細菌が行うというこれまでの常識が崩された。農業用土壌では、アンモニア酸化細菌と古細菌は、アンモニア濃度やpH、土壌深度等に応じて住み分けを行っているようである。亜硝酸はその後別の細菌によって硝酸に酸化され、植物など他の生物によって利用される。この過程に古細菌が関与するという報告はない。亜硝酸古細菌はまた、温室効果ガスである一酸化二窒素を放出する。一方で、亜硝酸古細菌はメタンの酸化分解を行うという報告もある。 また、硫黄循環においては、鉱物から硫黄を遊離する過程で古細菌が働く。例えばSulfolobusは単体硫黄を酸化することによって増殖する。この活動によって生成する硫酸が環境汚染を引き起こすことがあるが、硫黄循環においては、硫黄を植物に利用できる形に変化させるという点において重要である。ただし、この反応は細菌の一部も同様に起こすことができる。 メタン生成菌は炭素循環において独特の地位を占める。これらの古細菌が持つ水素や有機酸をメタンとして除去する能力は、嫌気条件での有機物代謝の最終段階を担っている。この過程は「メタン菌」において詳しい。天然ガスやメタンハイドレートも、その生成にはメタン菌が関与している。しかしながら、メタンの温室効果は二酸化炭素の21倍強く、地球温暖化寄与率は18%に達する。メタン菌は地球上におけるメタン放出量の少なくとも2/3以上を占めると考えられている。水田や反芻動物から放出されるメタンも、元を辿ればほぼ全てがメタン生成菌由来である。なお、古細菌の中には、硫酸還元細菌と共生し、嫌気条件下でメタンを硫化水素と二酸化炭素に分解する系統も存在する。 2015年には、植物プランクトンにとって重要な補因子である、海洋のビタミンB12生産の大部分をタウム古細菌が担うと報告された。 一部の古細菌は光エネルギーの利用も行うようである。バクテリオクロロフィルを使った光合成は知られていないものの、高度好塩菌やMarine group IIが保有する、バクテリオロドプシンやプロテオロドプシンは、光駆動プロトンポンプの機能を持つ。地球上における光エネルギーの利用はバクテリオクロロフィルを含むクロロフィル型が主だと考えられてきたが、細菌を含めたプロテオロドプシンによるエネルギー生産量はその1割にも達すると見積もられており、古細菌Marine group IIもその一部を占める。ただしこれらは炭素固定を行わない光従属栄養生物と考えられる。
※この「物質・エネルギー循環における役割」の解説は、「古細菌」の解説の一部です。
「物質・エネルギー循環における役割」を含む「古細菌」の記事については、「古細菌」の概要を参照ください。
- 物質・エネルギー循環における役割のページへのリンク