モデル生物としての C. elegans
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2013/12/22 13:49 UTC 版)
「C. elegans」の記事における「モデル生物としての C. elegans」の解説
モデル生物としての歴史は1960年代に始まる。当時シドニー・ブレナーは発生過程と神経系の問題が今後の生物学で重要な分野になると考えた。分子生物学の成功には、大腸菌などのモデル生物(取り扱いやすく、大量に培養可能で、遺伝学や生化学的手法が使えるという性質をもっている)を使ったことが大きく関与していると考えた彼は、同様の特徴を持つ多細胞生物として C. elegans をモデル生物とすることを提案した。当初近縁種の C. briggsae も候補にあげられていたが、ブレナーの好みで C. elegans になったとされる。 それ以前の発生生物学上のモデル生物としては古典的な発生学以来のウニやイモリ、分化の過程に関しては細胞性粘菌(キイロタマホコリカビ)がよく使われたが、前者はその体が大きく複雑に過ぎ、後者では体の構造がないに等しく、多細胞動物とは比較できない。そのため、後生動物でありながら体が小さく細胞数が少なく、しかも培養がたやすいものが必要であり、C. elegans はこれらの条件に良く合っている。現在では Caenorhabditis Genetics Center に登録される研究室は 400 を越える。 C. elegans をモデル生物として確立し、器官発生とアポトーシスの遺伝制御に関する発見をした成果に対し、ブレナーおよびロバート・ホロビッツ、ジョン・サルストンは2002年にノーベル生理学・医学賞を受賞した。 1990年にヒトゲノム計画のモデル系として、全ゲノム配列の決定が3年間のパイロットプロジェクトとして開始された。これはアメリカ国立衛生研究所とMRC分子生物学研究所の資金提供によるものである。1994年の資金追加を経て、1998年に多細胞生物として初めて 97Mb の塩基配列読み取りが完了した。その結果、6本の染色体上に約 19000 個の遺伝子の存在が予測された。 また、2本鎖の RNA を導入すると、それと相同の配列を持つ遺伝子の発現が抑制されるという、RNAi と呼ばれる遺伝子抑制手法が初めて確立された生物でもある。1998年にアンドリュー・ファイアーらにより報告されたこの現象は siRNA の発見へとつながり、現在遺伝子治療でもっとも期待される手法の一つとなっている。RNAi という現象を発見した成果に対し、ファイアーとクレイグ・メローは2006年にノーベル生理学・医学賞を受賞した。
※この「モデル生物としての C. elegans」の解説は、「C. elegans」の解説の一部です。
「モデル生物としての C. elegans」を含む「C. elegans」の記事については、「C. elegans」の概要を参照ください。
モデル生物としての C. elegans
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/07/17 06:21 UTC 版)
「カエノラブディティス・エレガンス」の記事における「モデル生物としての C. elegans」の解説
モデル生物としての歴史は1960年代に始まる。当時シドニー・ブレナーは発生過程と神経系の問題が今後の生物学で重要な分野になると考えた。分子生物学の成功には、大腸菌などのモデル生物(取り扱いやすく、大量に培養可能で、遺伝学や生化学的手法が使えるという性質をもっている)を使ったことが大きく関与していると考えた彼は、同様の特徴を持つ多細胞生物として C. elegans をモデル生物とすることを提案した。当初近縁種の C. briggsae も候補にあげられていたが、ブレナーの好みで C. elegans になったとされる。 それ以前の発生生物学上のモデル生物としては古典的な発生学以来のウニやイモリ、分化の過程に関しては細胞性粘菌(キイロタマホコリカビ)がよく使われたが、前者はその体が大きく複雑に過ぎ、後者では体の構造がないに等しく、多細胞動物とは比較できない。そのため、後生動物でありながら体が小さく細胞数が少なく、しかも培養がたやすいものが必要であり、C. elegans はこれらの条件に良く合っている。現在では Caenorhabditis Genetics Center に登録される研究室は 400 を越える。 C. elegans をモデル生物として確立し、器官発生とアポトーシスの遺伝制御に関する発見をした成果に対し、ブレナーおよびロバート・ホロビッツ、ジョン・サルストンは2002年にノーベル生理学・医学賞を受賞した。 1990年にヒトゲノム計画のモデル系として、全ゲノム配列の決定が3年間のパイロットプロジェクトとして開始された。これはアメリカ国立衛生研究所とMRC分子生物学研究所の資金提供によるものである。1994年の資金追加を経て、1998年に多細胞生物として初めて 97Mb の塩基配列読み取りが完了した。その結果、6本の染色体上に約 19000 個の遺伝子の存在が予測された。 また、2本鎖の RNA を導入すると、それと相同の配列を持つ遺伝子の発現が抑制されるという、RNAi と呼ばれる遺伝子抑制手法が初めて確立された生物でもある。1998年にアンドリュー・ファイアーらにより報告されたこの現象は siRNA の発見へとつながり、現在遺伝子治療でもっとも期待される手法の一つとなっている。RNAi という現象を発見した成果に対し、ファイアーとクレイグ・メローは2006年にノーベル生理学・医学賞を受賞した。 身体が透明で外来遺伝子の発現が容易であることから、蛍光レポーターなどの機能タンパク質の性能評価に適した多細胞生物である。マーティン・チャルフィーは、緑色蛍光タンパク質(GFP)を C. elegans の機械刺激受容神経に発現させ、GFPを蛍光レポータータンパク質として異種生物に応用できることを示した。この成果により、チャルフィーは下村脩、ロジャー・Y・チエンとともに2008年にノーベル化学賞を受賞した。 2015年に九州大学の研究グループは、 C. elegans を使って、被験者の尿の臭いを利用して早期かつ高精度のがん検診に成功したことを発表した。 OpenWormという、C. elegans を細胞レベルでシミュレーションする国際的なオープンサイエンスプロジェクトがある。
※この「モデル生物としての C. elegans」の解説は、「カエノラブディティス・エレガンス」の解説の一部です。
「モデル生物としての C. elegans」を含む「カエノラブディティス・エレガンス」の記事については、「カエノラブディティス・エレガンス」の概要を参照ください。
- モデル生物としての C. elegansのページへのリンク