量子群
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/12/22 09:04 UTC 版)
この項目「量子群」は途中まで翻訳されたものです。(原文:英語版 "Quantum group" 10:05, 2 March 2016 (UTC)) 翻訳作業に協力して下さる方を求めています。ノートページや履歴、翻訳のガイドラインも参照してください。要約欄への翻訳情報の記入をお忘れなく。(2016年3月) |
代数的構造 → 群論 群論 |
---|
![]() |
数学と理論物理学において、量子群(りょうしぐん、英: quantum group)は付加構造を持った様々な種類の非可換代数を指す。一般に、量子群はある種のホップ代数である。ただ1つの包括的な定義があるわけではなく、広範に類似した対象の族がある。
用語「量子群」は最初量子可積分系の理論において現れた。ウラジーミル・ドリンフェルト (Володи́мир Дрі́нфельд, Vladimir Drinfeld) と神保道夫によってホップ代数のある特定のクラスとして定義されたのだった。同じ用語は古典リー群あるいはリー環を変形したあるいはそれに近い他のホップ代数に対しても用いられる。例えば、ドリンフェルトと神保の仕事の少し後にShahn Majidによって導入された、量子群の `bicrossproduct' のクラスである。
ドリンフェルトのアプローチでは、量子群は補助的なパラメーター q あるいは h に依存したホップ代数として生じる。この代数は、q = 1 あるいは h = 0 のとき、ある種のリー環(しばしば半単純あるいはアフィン)の普遍包絡環になる。密接に関係するのはある双対対象であり、これもホップ代数であり量子群と呼ばれる。これは対応する半単純代数群あるいはコンパクトリー群上の関数環を変形したものである。
群がしばしば対称性として現れるのと同じように、量子群は多くの他の数学的対象に作用する。そのような場合に形容詞「量子」(quantum) を導入することが流行となっている。例えば量子平面や量子グラスマン多様体といったものがある。
直観的意味
量子群の発見は全く予想されていなかった、というのも、長い間、コンパクト群や半単純リー環は「堅い」対象である、言い換えると、「変形」(deform) できないと思われていたからだ。量子群の背後にある思想の1つは、ある意味で同値だがより大きい構造、すなわち群環や普遍包絡環を考えれば、群あるいは包絡環は「変形」できる(変形すると群や包絡環ではなくなるが)ということである。正確には、変形は可換とも余可換とも限らないホップ代数の圏において達成される。変形した対象を、アラン・コンヌ (Alain Connes) の非可換幾何の意味での「非可換空間」上の関数の代数として考えることができる。しかしながら、この直観は、Leningrad School (Ludwig Faddeev, Leon Takhtajan, Evgenii Sklyanin, Nicolai Reshetikhin and Vladimir Korepin) と、Japanese School による関連した研究によって発展された、量子ヤン・バクスター方程式と量子逆散乱法の研究において、量子群の特定のクラスが有用性を既に証明された後に来た[1]。量子群の第二の双クロス積のクラスの背後にある直観は異なり、量子重力へのアプローチとして自己双対な対象の研究から来た[2]。
ドリンフェルト・神保型の量子群
一般に「量子群」と呼ばれる対象の1つのタイプはホップ代数の圏において半単純リー環あるいはより一般にカッツ・ムーディ代数の普遍包絡環の変形としてウラジーミル・ドリンフェルトと神保道夫の研究において現れた。結果の代数は付加構造を持っており、準三角ホップ代数となる。
A = (aij) をカッツ・ムーディ代数のカルタン行列とし、q を 0 でも 1 でもない複素数とする。このとき量子群 Uq(G), ただし G はカルタン行列が A であるリー環、は以下の生成元と関係式により定まる単位的結合代数として定義される。生成元は、kλ(ただし λ はウェイト格子の元、つまり 2(λ, αi)/(αi, αi) はすべての i に対して整数)、ei, fi(単純ルート αi に対して)。関係式は
- 2002年、H.-J. Schneider と N. Andruskiewitsch[3]は、とくに上記の Uq(g) の有限商として、(素数 2, 3, 5, 7 を除いて)余根基がアーベル群の点状ホップ代数の長年に渡る分類の努力を終えた。通常の半単純リー環のときと同じようにそれらは E たち(ボレルパート)と双対の F たちと K たち(カルタン部分環)に分解する:
- 決定的な材料は従って、I. Heckenberger[4] による一般ディンキン図形のことばによるアーベル群に対する有限ニコルス代数の分類であった。小さい素数の場合には、三角形のようなエキゾチックな例が起こる(ランク 3 のディンキン図形の図も参照)。
- その間、Schneider と Heckenberger[5] は、(有限次元の仮定なしに)Kharcheko によってアーベルな場合に証明されたように算術的なルート系の存在を非可換な場合にも一般に証明しPBW基底を生成した。これは最近特別な場合 Uq(g) に使うことができ[6]、例えばこれらの量子群のある種の余イデアル部分代数とリー代数 g のワイル群の位数との数値的な一致を説明する。
コンパクト行列量子群
S.L. Woronowicz はコンパクト行列量子群を導入した。コンパクト行列量子群はその上の「連続関数」がC*環の元によって与えられるような抽象的構造である。コンパクト行列量子群の幾何学は非可換幾何学の特別な場合である。
コンパクトハウスドルフ位相空間上の複素数値連続関数の全体は可換C*環をなす。ゲルファントの定理により、可換C*環はあるコンパクトハウスドルフ位相空間上の複素数値連続関数のC*環に同型であり、その位相空間はC*環によって同相の違いを除いて一意的に決定される。
コンパクト位相群 G に対し、C*環の準同型写像
- Δ: C(G) → C(G) ⊗ C(G)
(ただし C(G) ⊗ C(G) はC*環のテンソル積、つまり、C(G) と C(G) の代数的なテンソル積の完備化)であって、すべての f ∈ C(G) とすべての x, y ∈ G に対して Δ(f)(x, y) = f(xy)(ただしすべての f, g ∈ C(G) とすべての x, y ∈ G に対して (f ⊗ g)(x, y) = f(x)g(y))であるものが存在する。また、乗法的な線型写像
- κ: C(G) → C(G)
であって、すべての f ∈ C(G) とすべての x ∈ G に対して κ(f)(x) = f(x−1) となるものが存在する。これは G が有限でない限り真に C(G) をホップ代数にはしない。一方、G の有限次元表現はホップ *-代数でもある C(G) の *-部分代数を生成するのに使うことができる。具体的には、 が G の n 次元表現であれば、すべての i, j に対して uij ∈ C(G) であり
である。すべての i, j に対する uij とすべての i, j に対する κ(uij) によって生成された * 代数はホップ * 代数であることが従う:余単位はすべての i, j に対して ε(uij) = δij(ただし δij はクロネッカーのデルタ)によって決定され、antipode は κ で、単位は
によって与えられる。
一般化として、コンパクト行列量子群は対 (C, fu) として定義される、ただし C は C* 代数で、 は C の元を成分に持つ行列であって以下を満たす。
- u の要素によって生成される C の * 部分代数 C0 は C において稠密である。
- 余積 Δ: C → C ⊗ C(ただし C ⊗ C は C* 代数のテンソル積、つまり C と C の代数的テンソル積の完備化)と呼ばれる C* 代数準同型であってすべての i, j に対して
- を満たすものが存在する。
- 次のような線型反乗法的写像 κ: C0 → C0(余逆射)が存在する:すべての v ∈ C0 に対して κ(κ(v*)*) = v, および
- ただし I は C の単位元。κ は反乗法的なので、C0 のすべての元 v, w に対して κ(vw) = κ(w) κ(v) である。
連続性の結果として、C 上の余積は余結合的である。
一般に、C は双代数ではなく、C0 はホップ *-環である。
インフォーマルには、C はコンパクト行列量子群上の複素数値連続関数の *-環と見なすことができ、u はコンパクト行列量子群の有限次元表現と見なすことができる。
コンパクト行列量子群の表現はホップ * 代数の余表現によって与えられる(余ユニタリ余結合的余代数 A の余表現は成分が A の正方行列 (よって v は M(n, A) に属する)であってすべての i, j に対して
ですべての i, j に対して ε(vij) = δij となるものである)。さらに、表現 v は v の行列がユニタリであるとき(あるいは同じことだがすべての i, j に対して κ(vij) = v*ij であるとき)ユニタリと呼ばれる。
コンパクト行列量子群の例は SUμ(2) である、ただしパラメーター μ は正の実数である。なので SUμ(2) = (C(SUμ(2)), u) である、ただし C(SUμ(2)) は以下を満たす α と γ によって生成された C* 代数である:
また、
よって余積は Δ(α) = α ⊗ α − γ ⊗ γ*, Δ(γ) = α ⊗ γ + γ ⊗ α* によって決定され、余逆は κ(α) = α*, κ(γ) = −μ−1γ, κ(γ*) = −μγ*, κ(α*) = α によって決定される。u は表現であるがユニタリ表現ではないことに注意。u はユニタリ表現
と同値である。
同値であるが、SUμ(2) = (C(SUμ(2)), w) である、ただし C(SUμ(2)) は以下を満たす α と β によって生成される C* 代数である:
また
よって余積は Δ(α) = α ⊗ α − μβ ⊗ β*, Δ(β) = α ⊗ β + β ⊗ α* によって決定され、余逆は κ(α) = α*, κ(β) = −μ−1β, κ(β*) = −μβ*, κ(α*) = α によって決定される。w はユニタリ表現であることに注意。2つの実現は方程式 によって同一視できる。
μ = 1 のとき、SUμ(2) は具体的なコンパクト群 SU(2) 上の関数の代数 C(SU(2)) に等しい。
Bicrossproduct quantum groups
Whereas compact matrix pseudogroups are typically versions of Drinfeld–Jimbo quantum groups in a dual function algebra formulation, with additional structure, the bicrossproduct ones are a distinct second family of quantum groups of increasing importance as deformations of solvable rather than semisimple Lie groups. They are associated to Lie splittings of Lie algebras or local factorisations of Lie groups and can be viewed as the cross product or Mackey quantisation of one of the factors acting on the other for the algebra and a similar story for the coproduct Δ with the second factor acting back on the first. The very simplest nontrivial example corresponds to two copies of R locally acting on each other and results in a quantum group (given here in an algebraic form) with generators p, K, K−1, say, and coproduct
where h is the deformation parameter. This quantum group was linked to a toy model of Planck scale physics implementing Born reciprocity when viewed as a deformation of the Heisenberg algebra of quantum mechanics. Also, starting with any compact real form of a semisimple Lie algebra g its complexification as a real Lie algebra of twice the dimension splits into g and a certain solvable Lie algebra (the Iwasawa decomposition), and this provides a canonical bicrossproduct quantum group associated to g. For su(2) one obtains a quantum group deformation of the Euclidean group E(3) of motions in 3 dimensions.
関連項目
関連分野
- リー双代数
- ポアソン・リー群
- アフィン量子群
- 量子アフィン代数
研究者
脚注
- ^ Schwiebert, Christian (1994), Generalized quantum inverse scattering, pp. 12237, arXiv:hep-th/9412237v3, Bibcode: 1994hep.th...12237S
- ^ Majid, Shahn (1988), “Hopf algebras for physics at the Planck scale”, Classical and Quantum Gravity 5 (12): 1587–1607, Bibcode: 1988CQGra...5.1587M, doi:10.1088/0264-9381/5/12/010
- ^ Andruskiewitsch, Schneider: Pointed Hopf algebras, New directions in Hopf algebras, 1–68, Math. Sci. Res. Inst. Publ., 43, Cambridge Univ. Press, Cambridge, 2002.
- ^ Heckenberger: Nichols algebras of diagonal type and arithmetic root systems, Habilitation thesis 2005.
- ^ Heckenberger, Schneider: Root system and Weyl gruppoid for Nichols algebras, 2008.
- ^ Heckenberger, Schneider: Right coideal subalgebras of Nichols algebras and the Duflo order of the Weyl grupoid, 2009.
参考文献
- Grensing, Gerhard (2013). Structural Aspects of Quantum Field Theory and Noncommutative Geometry. World Scientific. ISBN 978-981-4472-69-2
- Jagannathan, R. (2001年). “Some introductory notes on quantum groups, quantum algebras, and their applications”
- Kassel, Christian (1995), Quantum groups, Graduate Texts in Mathematics, 155, Berlin, New York: Springer-Verlag, ISBN 978-0-387-94370-1, MR1321145
- Lusztig, George (2010) [1993]. Introduction to Quantum Groups. Cambridge, MA: Birkhauser. ISBN 978-0-817-64716-2
- Majid, Shahn (2002), A quantum groups primer, London Mathematical Society Lecture Note Series, 292, Cambridge University Press, ISBN 978-0-521-01041-2, MR1904789
- Majid, Shahn (January 2006), “What Is...a Quantum Group?” (PDF), Notices of the American Mathematical Society 53 (1): 30–31 2008年1月16日閲覧。
- Podles, P.; Muller, E. (1997), Introduction to quantum groups, pp. 4002, arXiv:q-alg/9704002, Bibcode: 1997q.alg.....4002P
- Shnider, Steven; Sternberg, Shlomo (1993). Quantum groups: From coalgebras to Drinfeld algebras. Graduate Texts in Mathematical Physics. 2. Cambridge, MA: International Press
- Street, Ross (2007), Quantum groups, Australian Mathematical Society Lecture Series, 19, Cambridge University Press, ISBN 978-0-521-69524-4, MR2294803