出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/06 05:53 UTC 版)
詳細は「群の表現」を参照 群 G が集合 X に作用するとは、G の各元が、X 上定義された全単射で群構造と両立するものを定めることをいう。ただし、X にさらに構造が入っているときは、それに応じて表現の概念に制限を加えるほうが有効である。例えばよくある状況として、群 G のベクトル空間 V における(または V を表現空間とする)表現(線型表現)とは、GL(V) を V 上の正則線型変換全体の成す群として、群準同型 ρ: G → GL(V) のことをいう。これはつまり、群 G の各元 g に線型自己同型 ρ(g) が割り当てられていて、さらに G の別の任意の元 h に対して ρ(g) ∘ ρ(h) = ρ(gh)が成り立つということである。 この定義は二つの方向性で捉えることができて、いずれの仕方でも(群コホモロジーや同変 K-理論のような)数学のまったく新たな領域を生じる。ひとつは、群 G について新たな情報をもたらすものである。例えば群 G における演算はしばしば抽象的に与えられるけれども、表現 ρ を通じて(特に表現が忠実のとき)群演算は行列の積という非常に具体的なものに対応付けられることになる。もうひとつは、よく知られた群が与えられ、それが複雑な対象に作用しているものとすれば、そのような対象を調べるのが簡単になるというものである。例えば、G が有限群とすれば、表現空間 V が既約表現の直和に分解されるというマシュケの定理が知られているが、既約表現に対してはシューアの補題などが利用できるので、V 全体を考えるよりもずっと扱いやすい。 与えられた群 G に対する表現論とは、G の表現としてどのようなものが存在しうるかを問うものである。状況設定はさまざまで、どのような手法を使えるかとか、どのような結果が得られるかというようなことがそれぞれの場合で変わってくる。有限群の表現論およびリー群の表現論は表現論における二大主要テーマである。群の表現の全体像は群の指標によって統制されている。例えば、フーリエ多項式は、周期函数全体の成す L2-空間に作用する、絶対値 1 の複素数全体の成す群 U(1) の指標として解釈することができる。
※この「群の表現」の解説は、「群論」の解説の一部です。
「群の表現」を含む「群論」の記事については、「群論」の概要を参照ください。
辞書ショートカット
カテゴリ一覧
すべての辞書の索引
群の表現のお隣キーワード |
群の表現のページの著作権
Weblio 辞書
情報提供元は
参加元一覧
にて確認できます。
All text is available under the terms of the GNU Free Documentation License. この記事は、ウィキペディアの群の表現 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。 |
|
Text is available under GNU Free Documentation License (GFDL). Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの群論 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 |
ビジネス|業界用語|コンピュータ|電車|自動車・バイク|船|工学|建築・不動産|学問
文化|生活|ヘルスケア|趣味|スポーツ|生物|食品|人名|方言|辞書・百科事典
ご利用にあたって
|
便利な機能
|
お問合せ・ご要望
|
会社概要
|
ウェブリオのサービス
|
©2025 GRAS Group, Inc.RSS