ラグランジュの定理_(群論)とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > ラグランジュの定理_(群論)の意味・解説 

ラグランジュの定理 (群論)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/12/08 14:01 UTC 版)

群論において、ラグランジュの定理英語:Lagrange's theorem)とは、次のような定理である[1][2][3][4]

ラグランジュの定理 ― G有限群とし、HG部分群とする。このとき |G| = [G : H] |H| が成り立つ。ただし、[G : H]G における H指数である。

[G : H] に関しては#同値類による指数を参照。

定義

部分群による同値関係

G の要素 x, y に関して、群 G の部分群 H の要素 h を用いて、x = yh となるとき、xy と定義する。G の単位元を e とすると、H は部分群だから eH であり、x = xe となるので、xx である。hH のとき、H は部分群だから h−1H となるので、xy のとき、x = yhxh−1 = y となり yx である。x, y, zG に関して、xy, yz ならば x = yh1, y = zh2 (h1, h2H) だから x = (zh2)h1 = z(h2h1) となる。H は部分群なので、h2h1H となるから xz である。したがって、同値関係になる[5][6][7][8]

同値関係による同値類

部分群 H に関して、同値関係 による同値類 {xG | xa}{xG | x = ah (hH)} になるから、aH に等しくなる。これを aH による左剰余類(left coset)という。同値関係 による同値類 aH の集合 {aH | aG}G/H と書く[9][6][10]

部分群 H が有限群の場合は H = {h1, h2, h3, …, hm} と表すことができて、左剰余類 aHaH = {ah1, ah2, ah3, …, ahm} となる[2]

同値類の間の同型写像

部分群 H から同値類 aH への写像 φa : HaHφa(h) = ah と定義するとき、φa(h1) = φa(h2) とすると、ah1 = ah2 となるから、左から a−1 を掛けて h1 = h2 となるので、写像 φa は単射になる。写像 φa による部分群 H の像が aH だから写像 φa は全射になり、全単射になる。したがって、写像 φa の逆写像 φa−1: aHHφa−1(x) = a−1x となる。これより、同値類 aH から同値類 bH への写像 f : aHbHf (x) = (φbφa−1)(x) = φb(φa−1(x)) = ba−1x と定義すると写像 f は全単射になる。したがって、任意の二つの同値類 aHbH は同型となり、|aH| = |bH| = |H| となる[9][11]

同値類による指数

左剰余類の集合 G/H の要素の個数(濃度)である |G/H|G における H指数(index of a subgroup H in a group G)と呼び、[G : H] または |G : H| または (G : H) と書く[5][6][12]

G/H が有限集合の場合は、G/H = {a1H, a2H, a3H, …, akH} と表すことができて、[G : H] = |G/H| = k となる。

G が有限群の場合は、以下のように書ける[2]

この節は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。このテンプレートの使い方
出典検索?"ラグランジュの定理" 群論 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL
2011年7月

ラグランジュは代数方程式の解法に関連して、多項式上の置換の理論でこの定理を証明しているが、これは現在の言い方でいう対称群の場合にあたる。当時はまだ群の概念が整備されていなかったので、ラグランジュ自身が群一般で考えていたわけではない。ただその性質は容易に抽象群へと拡張されるもので、現在でもそのままラグランジュの定理と呼ばれている。群論の定理としては、歴史上最初に出現したものである。

脚注

注釈

  1. ^ この事実は1799年にはすでに知られていた[24]
  2. ^ 可解群に対してはホールの定理も参照のこと。

出典

  1. ^ 国吉 & 高橋 2001, 定理2.6.
  2. ^ a b c d e f 星 2016, p. 93.
  3. ^ 雪江 2010, 定理2.6.20.
  4. ^ Isaacs 2008, p. 331, Theorem X.8(d).
  5. ^ a b 国吉 & 高橋 2001, p. 21.
  6. ^ a b c 星 2016, p. 92.
  7. ^ 雪江 2010, 例2.6.6.
  8. ^ 雪江 2010, 注2.6.17.
  9. ^ a b 国吉 & 高橋 2001, 定理2.5.
  10. ^ 雪江 2010, 定義2.6.16.
  11. ^ 雪江 2010, 命題2.6.18.
  12. ^ 雪江 2010, 定義2.6.19.
  13. ^ #同値関係による同値類を参照。
  14. ^ #同値類の間の同型写像を参照。
  15. ^ #同値類による指数を参照。
  16. ^ Joh. “指数の定理”. 物理のかぎしっぽ. 2020年9月21日閲覧。
  17. ^ Bray, Nicolas, Lagrange's Group Theorem, MathWorld, https://mathworld.wolfram.com/LagrangesGroupTheorem.html 
  18. ^ Joh. “ラグランジェの定理”. 物理のかぎしっぽ. 2020年9月21日閲覧。
  19. ^ a b 雪江 2010, 系2.6.21.
  20. ^ Isaacs 2008, p. 332, Corollary X.9.
  21. ^ 国吉 & 高橋 2001, 定理2.7.
  22. ^ 雪江 2010, 命題2.6.22.
  23. ^ 雪江 2010, 定理2.6.23.
  24. ^ Gallian 1993, p. 23.
  25. ^ Isaacs 2008, p. 9.
  26. ^ Isaacs 2008, p. 24, Corollary 1.25.

参考文献

関連項目

外部リンク

動画




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ラグランジュの定理_(群論)」の関連用語

ラグランジュの定理_(群論)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ラグランジュの定理_(群論)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのラグランジュの定理 (群論) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS