超再生検波
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/17 09:22 UTC 版)
再生検波回路を発展させた回路として超再生検波回路がある。これは1922年にアームストロングが発明した回路で、再生検波回路を改良し意図的に発振を断続(クエンチング)させることでフィードバックの調整を不要にしたものである。 再生検波回路は発振直前の状態で最も高い感度が得られるが、不安定ですぐに発振してしまうため、この状態を維持するのは難しい。超再生検波回路では再生回路にクエンチング発振回路を付加し、発振状態と非発振状態とを繰り返させることで、この最も感度の高い状態を利用する。非発振状態から発振状態に移る時の回路は微弱な信号にも反応し、発振の立ち上がりのタイミングと立ち上がり方は入力信号の強度により変わる。クエンチング発振により発振状態と非発振状態とを繰り返すと、発振開始のタイミングで入力信号の強さをサンプリングしたようになり、発振波形から元の受信信号を取り出すことができる。サンプリング定理による制限のためクエンチング周波数は受信したい信号の帯域幅の最低でも2倍以上にしないと音質が悪くなる。ラジオなどの用途では人間の耳に聞こえない20kHz以上の周波数にする。 クエンチング周波数をあまり低くすることができず、入力信号のサンプリングに相当する発振の立ち上がりにも一定の時間が必要で、同調回路のQ値が高いと発振の停止にも時間がかかるため、超再生検波回路は低い受信周波数で十分な性能を得ることができない。そのためVHF帯以上の周波数で使用されることが多い。 超再生検波回路の動作には、発振が飽和する前に非発振状態に戻るリニアモード(linear mode)と、完全に飽和した後に非発振状態に戻るログモード(logarithmic mode)がある。 リニアモードでは入力信号の強さで発振強度が変わり、入力信号でパルス振幅変調(PAM)されたような発振波形になる。このモードでは入力信号の強度と発振波形の振幅がほぼ比例する。 ログモードでは振幅でなく飽和するタイミングが信号強度で変わり、入力信号でパルス幅変調(PWM)されたような発振波形になる。入力信号のレベルが低い時は発振の立ち上がりが遅く、信号レベルが高くなるほど立ち上がりが指数関数的に早くなるため、ログモードでの信号強度と発振が飽和する時間との関係は対数的になる。この性質は自動利得制御(AGC)のように働き、弱い信号に対して利得が高くなり強い信号に対しては利得が下がる。そのためログモードは広いダイナミックレンジが要求される用途で使うことができる 。またこのような特性により、弱い信号の近くの周波数に強い信号があるとその影響で利得が下がり、弱い信号が抑圧される性質がある。 超再生検波回路には以下の特徴がある。 単純な回路で非常に高い増幅率が得られる 再生回路で必要だった再生の調整が不要 回路自身にAGC特性がありダイナミックレンジが広い 受信周波数で発振しアンテナから電波として放出され他の受信機に妨害を与える(高周波増幅段が無い場合) クエンチング発振による雑音(クエンチングノイズ)が発生する 無信号時の雑音が多い 選択度がよくなく、受信周波数内の最も強い信号を受信する 超再生検波回路の使用例として有名なものに、第二次世界大戦中にドイツで使われたFuG202リヒテンシュタインレーダーや同時期のアメリカ軍の敵味方識別装置がある。この頃の日本でも、海軍の艦隊内VHF通信用無線機としてほとんど全ての艦船に装備された海軍90式無線電話機 など多くの無線機で使用された。 再生検波回路と同様、超再生検波回路もスーパーヘテロダイン受信機が一般的になった1950年代以降は使われなくなり、ラジコンや無線式のガレージドアなど高い性能が要求されない一部の用途でのみ使われた。しかし単純でLSI化しやすく消費電力が低い特徴のため、近年になって低価格、超低消費電力が要求される近距離用の低~中ビットレート無線通信システムへの応用が広がり再び注目され始めた。最初は低価格が要求される車のキーレスエントリーシステムなどに使われ、その後コンピュータの周辺機器、近距離用センサーネットワーク、通信機能付きインプラント などに使われている。受信部が400μW程度で動作するなど、超低消費電力なものが多い。 ラジコンや無線式リモコンなどOM/OFFのみの単純な動作をする回路では超再生回路が電波を受信していない状態ではクエンチングによって発信しているのをダイオードとコンデンサを使ってDC出力として取り出すことでリレーを常時ONにしておき、信号が乗っていない電波を受信するとノイズが止まってOFFになる単純な回路として応用されていた。これは特定の周波数の電波を受信するとONになる単純な仕組みだった為に近くに強い電波を出す発信源があると誤作動したので玩具や自動ドアなどの誤作動が問題にならない用途に用いられていた。
※この「超再生検波」の解説は、「再生回路」の解説の一部です。
「超再生検波」を含む「再生回路」の記事については、「再生回路」の概要を参照ください。
- 超再生検波のページへのリンク