直観的な説明
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/19 04:41 UTC 版)
初めに最も簡単な場合を扱う。すなわち、実数値の変数を1個もち、値も1個の実数であるような関数 f(x)(または単に f とも書く)を微分することを考える。「微分する」というのは、より正確には、微分係数(英語版)または導関数のいずれかを求めることを意味している。 説明を単純にするため、f(x) はすべての実数 x に対して定義されているとしよう。すると各々の実数 a に対して、f の a における微分係数と呼ばれる数がある(定義されない場合もあるが、ここでは理想的な状況のみを想定して説明する)。これを f′(a) で表す。また、実数 a に対して微分係数 f′(a) を対応させる関数 f′ のことを f の導関数という。 微分係数 f′(a) とは何であるか直観的に説明するには、いくつかの方法がある。 微分係数 f′(a) とは、関数 f のグラフに x = a において(すなわち点 (a, f(a)) において)接線をひいたときの、その接線の傾きのことである。 微分係数 f′(a) とは、変数 x の値の変化に伴う f(x) の変化を考えたときの、x = a における f(x) の瞬間変化率のことである。 微分係数 f′(a) とは、関数 f のグラフの x = a 付近を(すなわち点 (a, f(a)) 付近を)限りなく拡大していったときに、グラフが直線に近づいて見える場合における、その直線の傾きのことである。 これらはいずれも、論理的に厳密な定義とはいえない。それは、「接線」や「瞬間変化率」について厳密な定義が与えられていないし、またグラフを「限りなく拡大する」ということの意味も定かではないからである。 ごく単純な関数については、上記の説明が微分係数の具体的な値について十分な示唆を与えるのは確かだ。たとえば1次関数 f(x) = Ax + B を考えると、そのグラフは直線なので、「x = a における接線」もその直線自身であると考えるのが妥当だろう。直線 y = Ax + B の傾きは A だから、微分係数 f′(a) の値も A とすべきだと考えられる。また、2次関数についても、グラフの接線の概念を微分とは無関係に定義して、その傾きを求めることはできる。だが、ほとんどの関数にはこのような手法は通用しないから、一般的な定義を与えるためには新しい考えが必要である。 .mw-parser-output .tmulti .thumbinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;align-items:center}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}極限としての変化率 Figure 1. (x, f(x)) における接線 Figure 2. 二点 (x, f(x)) および (x+h, f(x+h)) の定める、曲線 y= f(x) の割線(英語版) Figure 3. 割線の極限としての接線 Figure 4. 割線の極限としての接線(アニメーション)
※この「直観的な説明」の解説は、「微分」の解説の一部です。
「直観的な説明」を含む「微分」の記事については、「微分」の概要を参照ください。
直観的な説明
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/03/02 09:20 UTC 版)
ユークリッド平面を考える一つの方法は、(距離や角度といったような言葉で表される)ある種の関係を満足する点集合と見なすことである。例えば、平面上には二種類の基本操作が存在する。一つは平行移動で、これは平面上の各点が同じ方向へ同じ距離だけ動くという平面のずらし操作である。いま一つは平面上の決まった点に関する回転で、これは平面上の各点が決められた点のまわりに一貫して同じ角度だけ曲がるという操作である。ユークリッド幾何学の基本的教義の一つとして、二つの図形(つまり点集合の部分集合)が等価なもの(合同)であるとは、平行移動と回転および鏡映の有限個の組合せ(ユークリッドの運動群)で一方を他方に写すことができることをいう。 これらのことを数学的にきちんと述べるには、距離や角度、平行移動や回転といった概念をきちんと定義せねばならない。標準的な方法は、ユークリッド平面を内積を備えた二次元実ベクトル空間として定義することである。そうして ユークリッド平面の点は、二次元の座標ベクトルに対応する。 平面上の平行移動は、ベクトルの加法に対応する。 回転を定義する角度や距離は、内積から導かれる。 といったようなことを考えるのである。こうやってユークリッド平面が記述されてしまえば、これらの概念を勝手な次元へ拡張することは実に簡単である。次元が上がっても大部分の語彙や公式は難しくなったりはしない(ただし、高次元の回転についてはやや注意が必要である。また高次元空間の可視化は、熟達した数学者でさえ難しい)。 最後に気を付けるべき点は、ユークリッド空間は技術的にはベクトル空間ではなくて、(ベクトル空間が作用する)アフィン空間と考えなければいけないことである。直観的には、この差異はユークリッド空間には原点の位置を標準的に決めることはできない(平行移動でどこへでも動かせるため)ことをいうものである。大抵の場合においては、この差異を無視してもそれほど問題を生じることはないであろう。
※この「直観的な説明」の解説は、「ユークリッド空間」の解説の一部です。
「直観的な説明」を含む「ユークリッド空間」の記事については、「ユークリッド空間」の概要を参照ください。
- 直観的な説明のページへのリンク