平行移動
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/06/02 07:42 UTC 版)


ユークリッド幾何学における平行移動(へいこういどう、英: translation, parallel translation, parallel displacement)とは、すべての点を一定の方向に一定の距離だけ動かす変換である。
平行移動は並進[1]あるいは並進運動 (translational motion) とも呼ばれる。
平行移動は向きや距離・角度を保ち、非自明なものは不動点を持たない。
一次元の場合、平行移動 T は定数 a を用いて
- T(x) = x + a
と表せる。
概観
平行移動は各点に定ベクトルを加える操作として解釈することや、座標系の原点をずらす操作として解釈することもできる。定ベクトル v に対して、v に対応する平行移動 Tv は、点 P(p) を v だけ動かす写像
- Tv(p) = p + v
として働く。
平行移動は二つの図形の間の一対一対応や、ある平面から別の平面への写像とみることもできる[2]。T が平行移動であるとき、部分集合 A の写像 T による像を、A の T による平行移動と呼ぶ。T が定ベクトル v に対応する平行移動 Tv であるとき、A の Tv による平行移動はしばしば A + v と書かれる。
平行移動を剛体運動として記述することもできる(平行移動の他には回転と鏡映)。n-次元ユークリッド空間において任意の平行移動は等距変換である。平行移動全体の成す集合は平行移動群 T(n) を成す。この群はもとの空間(の加法群)と同型であり、ユークリッド群 E(n) の正規部分群である。E(n) の T(n) による剰余群は直交群 O(n) に同型:
- E(n)/T(n) ≅ O(n)
である。
ベクトル変数の写像 f(v) に作用する、定ベクトル δ に対応する平行移動作用素 Tδ は
- Hazewinkel, Michiel, ed. (2001), “Parallel displacement”, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
- Weisstein, Eric W. "Translation". mathworld.wolfram.com (英語).
- Terr, David. "Complex Translation". mathworld.wolfram.com (英語).
- Translation Transform at cut-the-knot
- Geometric Translation (Interactive Animation) at Math Is Fun
- Understanding 2D Translation and Understanding 3D Translation by Roger Germundsson, The Wolfram Demonstrations Project.