ウィムズハースト式誘導起電機
(ウィムズハースト起電機 から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/08/17 03:51 UTC 版)
![]() |
この記事には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。
|

ウィムズハースト式誘導起電機(ウィムズハーストしきゆうどうきでんき、英:Wimshurst machine)は、円盤を回転させる事で静電気を発生させる誘導型の静電発電機。英国の発明家ジェイムズ・ウィムズハーストによって1880年から1883年にかけて開発された。
垂直に設置された互いに逆回転する2枚の大型円盤、金属ブラシを付けた2本の金属棒、火花の発生する隙間 (Spark gap) を空けた2個の金属球、という独特の外観をしている。
概要

この機械は誘導型と呼ばれる静電発電機に属するもので、摩擦に頼ることなく静電誘導によって電荷を分離する。このタイプの初期機械は、ヴィルヘルム・ホルツ(1865,1867)、アウグスト・トープラー(1865)、J・ロバート・ヴォス(1880)らによって開発された。昔の機械は効率が悪く、予期不能な極性の切り替えを起こす傾向があるが、ウィムズハースト式にはどちらの欠陥も存在しない。
ウィムズハースト起電機では、2枚の絶縁円盤が反対方向に回転し、円盤にある多数の金属扇片(右図のA1,B1,B2など)も共に回転しつつ、金属棒で橋渡しされた両端のブラシ箇所(右図のX,X1およびY,Y1。X棒とY棒はねじれの位置で直交している)を通過する。誘導によって生じた電荷の不均衡は、両脇から各円盤に水平に渡された2組のクシ型電極(右図のZ,Z1)によって取り込まれる。これら集電器具は絶縁支持体に取り付けられており、出力端子と繋がっている。正のフィードバックが蓄積電荷を指数関数的に増加させ、空気の絶縁破壊電圧に達すると電気火花 (electric spark) が金属球の隙間を飛ぶ。
理論上この機械は自己起動ではなく、仮に円盤にあるどの扇片も電荷を有していなければ、他の扇片に電荷を誘導するものが一切存在しないことになる。実際には、空間内に自然に存在する僅かな残留電荷であっても「タネ」となるには十分で[1]、円盤を回転させれば発電プロセスは開始する。この機械は乾燥した空気中でのみ満足に作動する。電場に対抗して円盤を回すには何らかの力学的な動力が必要であり、機械が火花の電力へと変換するのがこのエネルギーである。ウィムズハースト起電機の定常状態出力は直流電流であり、その大きさは金属扇片で覆われた部分の面積、回転速度、および初期電荷分布の複雑な関数に比例する。絶縁の程度と機械の規模が到達しうる最大出力電圧を決定する。蓄電される火花のエネルギーは、2つあるライデン瓶(高電圧に適した初期型のコンデンサ)を追加することにより増やすことが可能で、この瓶内側の金属板が起電機の(クシ型電極から伸びる)出力端子とそれぞれ繋がっている。典型的なウィムズハースト式誘導起電機は、円盤直径の約1/3の長さの火花(数十マイクロアンペア程度)を生み出すことが可能である。

ウィムズハースト式誘導起電機は19世紀の物理学研究で使用された。また、1900-1920年には第一世代のクルックスX線管に電力供給するための高電圧を生みだす目的で使われることもあったが、一般的にはホルツ起電機や誘導コイルのほうが使用されていた。現在では、静電気の法則を目の前で披露するために科学博物館や教育現場でのみ使われている。
動作原理
互いに逆回転する2枚の絶縁円盤(通常ガラス製)には複数枚の金属扇片が貼り付けられている。この機械には、接地した小型ブラシ4個(機械の各円盤に2個ずつ、導体棒の両端にある)と電荷を取り込むクシ型電極2本が付いている。一般的なウィムズハースト式誘導起電機のブラシを保持する導体棒は各円盤に1本ずつあり、円盤を透かして見た場合は"×"を描くように(ねじれの位置で)直交している。電荷を取り込む2本のクシ型電極は一般的に水平に取り付けられ、両方の円盤の外縁に均等に接触している。このクシ型電極は通常、それぞれ別のライデン瓶と繋がっている。

円盤2枚のどこかに存在する僅かな電荷でも、この帯電プロセスが始まるには十分である。ここでは円盤Aで正味の電荷が僅かに正だったと仮定して、円盤AとBを互いに逆回転させる。A上の僅かに正(赤)帯電した扇片がX1の左位置だったとすると、その電場のために隣の円盤BのブラシY位置にある扇片が誘導されて負(緑)に帯電する[2]。ブラシを保持する導体棒(Y-Y1を結ぶ直線)を通じて静電誘導が起き、遠方のブラシY1(実際の円盤では180度反対の位置にある)と接する扇片に正の電荷が誘導される。さらに45°回転すると、クシ電極Z付近に来た円盤A上の正電荷は、円盤B上の正電荷がクシ電極Z付近に近づくことによって(正同士の)反発を受ける。そこに設置されたクシ型電極(Zの矢印端部)が、双方の正電荷を取り込んで扇片を電気的中性に戻す(□が黒になる)と共に、その正電荷をライデン瓶のアノード(赤い三角形)に蓄電していく。
続いて円盤Bに着目する。Bが90°回転すると、先ほどB上(のY1とY位置)に誘導された2つの電荷が隣の円盤Aのブラシ位置[X,X1]と重なる。この電場によってB上の電荷が円盤Aに2つの電荷(X1に正、Xに負)を誘導する。円盤Bが回転し続けると、Bにあった電荷は直近のクシ型電極によって取り込まれて蓄電される。この時、正(赤)の電荷は電極Zからライデン瓶のアノードへ蓄電され、負(緑)の電荷はもう一方のクシ型電極から別のライデン瓶のカソード(緑の三角形)に蓄電される。
ここで再び円盤Aに着目する。Aが90°回転すれば、先ほどA上(のX1とX位置)に誘導された2つの電荷もまた円盤Bのブラシ位置[Y,Y1]と重なって、円盤B上に同様の誘導を起こす。
Aの分極電荷がBの分極を誘導して、Bの分極電荷もまたAの分極を誘導する、というプロセスが繰り返される。扇片が誘導する電荷は導体棒の有限な電気容量とつり合うまで指数関数的に増大していく。これらの誘導された正と負の電荷は全て、各々のライデン瓶へとクシ型電極によって取り込まれていく。やがてライデン瓶の放電で火花(黄色のジグザグ)が発生した時、両円盤をめぐる帯電のサイクルが完了する。
対向する扇片に誘起された正負の電荷を引き離すのに必要な力学的エネルギーが、電気出力のエネルギー源となっている。
関連項目
- 静電気
- ケルヴィン水滴誘導起電機
- ヴァンデグラフ起電機
- テスラコイル
- エレキテル
- ペレトロン加速器 (Pelletron)
脚注
- ^ 山下充康「静電気発生器」小林理学研究所、小林理研ニュースNo.95、2007年1月
- ^ Table-Top Laboratory 「ウィムズハースト起電機」TTLブログ、2008年6月21日。書かれている原理を参考に、アニメーションに合わせて本文を若干変更。
参考文献
- "History of Electrostatic Generators". Hans-Peter Mathematick Technick Algorithmick Linguistick Omnium Gatherum.
- de Queiroz, Antonio Carlos M., "The Wimshurst Electrostatic Machine"
- Weisstein, Eric W., "Wimshurst Machine".
- Bossert, François, "Wimshurst machine". Lycée Louis Couffignal, Strasbourg.
- Charrier Jacques "La machine de Wimshurst". Faculté des Sciences de Nantes.
外部リンク
- The Wimshurst Machine Website、機械の写真とビデオクリップ
- MIT video demonstration and explanation of a Wimshurst machine 、マサチューセッツ工科大学の物理教材動画
- How Does a Wimshurst machine Work?、 セントメアリーズ大学の物理教材サイト
ウィムズハースト起電機
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/02/26 09:04 UTC 版)
「静電発電機」の記事における「ウィムズハースト起電機」の解説
英国の発明家ジェームズ・ウィムズハースト(英語版)は1878年に静電発電機の研究に着手し、ホルツ起電機を改良して2枚の回転板を持つ強力な起電機を作り出した。ウィムズハースト起電機の基本形が1883年に科学界に対して報告されると、その後はもっぱらこの種の起電機が用いられるようになった。ただし、それ以前によく似た構造の起電機がホルツとムーゼウスによって報告されていた。1885年、英国で史上最大級のウィムズハースト起電機が建造された(現在はシカゴ科学産業博物館に展示されている)。 ウィムズハースト起電機。2枚の円板が逆方向に回転し、円板上の小板(セクター)に誘起された電荷がブラシによって吸い取られ、左右のライデン瓶に溜められる。 表側の小板(A 1など)は裏側の小板(B1など)に対する誘導子としてはたらき、導体YY1を介して対向する2枚の小板に電荷を誘起する。ここで帯電した小板は次に導体XX1の位置で表の小板に対する誘導子となる。 小板を持たず、絶縁円板自体が電荷を運ぶ方式のウィムズハースト起電機。 ウィムズハースト起電機は著しく単純な装置で、あらゆる誘導起電機がそうであるように、電荷の静電誘導を利用して発電を行う。要するに、初めに存在していたごくわずかな電荷を利用して新たな電荷を誘起し、それを集めて初めの電荷に付け加え、同じプロセスを何度も繰り返す。ウィムズハースト起電機の構成は以下のとおりである。絶縁された2枚の円板はプーリーに取り付けられ、同軸で逆方向に回るようになっている。円板の外側の面には、金属など導電性の小板が円状に並んで貼り付けられている。それぞれの円板には両側がブラシとなった導体棒が付属しており、この棒でつながれた2枚の小板の間で静電誘導が起きて新たな電荷が誘起される。それぞれの円板に誘起された電荷は各1対の櫛型コレクター電極によって集められる。二つのライデン瓶は電荷を溜めるコンデンサとして用いられる。1対の電極は十分に溜まった電荷を放電するためにある。構造も構成要素も単純であるため、静電気の実験や演示に用いる機器を自作する場合、ウィムズハースト起電機が選ばれることが多い。広く普及したのもこれが理由である。 1887年、A・F・ヴァインホルトはレイザー起電機を改良し、垂直の金属棒に木製の筒を嵌めたものを誘導子として円板の近くに置くことで極性の反転を防いだ。M・L・ルビエはルビエ起電機の作製を報告した。これは基本的にヴォス起電機を簡略化したものであった。1893年、ボネッティは円板にセクター(金属の小板)を取り付けないタイプのウィムズハースト起電機の特許を取得した。ボネッティの装置はセクターつきのタイプよりはるかに強力だったが、外部から電荷を与えてやらなければ運転を始めることができなかった。 1898年、W・R・ピジョン(英語版)は独自の機構を備えたピジョン起電機を作製した。1890年代を通して起電機研究に打ち込んできた末の成果だった。同年10月28日、ピジョンはこれをロンドン物理学会(英語版)で発表した。また後にPhilosophical Magazine (1898/12, p.564, ) およびElectrical Review (Vol. XLV, p.748) で報告した。ピジョン起電機の特色は、静電誘導の効果を高めるために、対向円板のセクターを誘導子とするのに加えて固定誘導子を用いたことと、各部の絶縁性を高めたことだった。特に電荷を運ぶセクターは端子部を除いて絶縁体に埋め込まれていた。ピジョン起電機はウィムズハースト起電機とヴォス起電機を組み合わせた上で電荷のリークを低減したものだといえるが、前身となった装置のいずれよりも容易に電位を高めることができた。またこれに加え、ピジョンは「トリプレックス」・ウィムズハースト起電機(3枚の回転板からなる、中央の回転板を共有する2組の起電機)のセクターを絶縁材に埋め込んで出力電流を増加させる方式を研究し、特許(British Patent 22517 (1899))を取得した。 19世紀末から20世紀の初めにかけて、複数の回転板からなる起電機と、「トリプレックス」起電機(3枚の回転板を持つ)が大きく発展した。1900年、フレデリック・タズベリーは、起電機を金属容器に収めて空気や二酸化炭素で加圧すると、放電耐圧が向上するとともに、プレート間や支柱へのリークが低減することで性能が向上することを示した。1903年、アルフレート・ヴェールゼンはセクター板をエボナイトの回転板に埋め込み、表面には端子だけが突出している方式の起電機の特許を取った。1907年、ハインリヒ・ワメルズドルフは一種のホルツ起電機で、ヴェールゼンと同じ方式の回転板と誘導子をセルロイド板に埋め込んだタイプのものを報告した(DE154175、「ヴェールゼン起電機」)。ワメルズドルフはそのほかにも高性能の起電機を作製したが、そのうち最も有名なのは「コンデンサーマシン」(1920)と呼ばれるものである。単一の回転板にセクターが埋め込まれており、円板の縁からセクターの端が露出している方式だった。
※この「ウィムズハースト起電機」の解説は、「静電発電機」の解説の一部です。
「ウィムズハースト起電機」を含む「静電発電機」の記事については、「静電発電機」の概要を参照ください。
- ウィムズハースト起電機のページへのリンク