公理的集合論とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 公理的集合論の意味・解説 

公理的集合論

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/05/09 14:59 UTC 版)

公理的集合論(こうりてきしゅうごうろん、axiomatic set theory)とは、公理化された集合論のことである。

集合の公理系

ツェルメロ=フレンケル集合論(ZF公理系)

現在一般的に使われている集合の公理系はZF (ツェルメロ=フレンケル) 公理系、またはZF公理系に下で述べる選択公理(Axiom of Choice)を加えた ZFC公理系(Zermelo-Fraenkel set-theory with the axiom of Choice)である。ZC, ZでそれぞれZFCおよびZFから置換公理を除いたもの、Z-, ZF-, ZC-, ZFC- で各体系から正則性公理を除いたものを表す。キューネンは『The Foundations of Mathematics』(邦訳『キューネン数学基礎論講義』)で「初等数学のほとんどはZC-での中でなされる」と述べている[1]

基本的なZFの公理

  • 外延性の公理 AB が全く同じ要素を持つのなら AB は等しい:
この節の加筆が望まれています。 2022年8月

マーティンの公理

グロタンディーク宇宙の存在公理

圏論における議論の目的の一つに、群やその間の準同型といった数学的対象全体の性質を議論することがある[2]。しかし、これらを素朴に実装する (すなわち、内包原理を一般に適用する) ことは集合論上のパラドックスを引き起こすため、例えばZFCのような形式的な体系においては認められない。

マックレーンは『圏論の基礎』において、ユニバース (無限集合 ω を要素に持つグロタンディーク宇宙) を導入することでこの問題を回避している。ユニバースの要素となる集合を"小さい"集合、そうでないものを"大きい"集合とし、ユニバースの内側で通常の数学が行えるようにすることで、すべての小さい集合の圏 Set やすべての小さい圏の圏 Cat といったものの議論が可能になる。

グロタンディーク宇宙の存在は到達不能基数の存在と等価である (正確に書くと、任意のグロタンディーク宇宙 U はある到達不能基数 κU = Vκ と表すことができ[3]、逆に任意の到達不能基数 κ に対して濃度が κ であるようなグロタンディーク宇宙が存在する[4])。到達不能基数はZFCのモデルを提供するため、これはZFCよりも強い公理系をなす。

タルスキの公理

アレクサンドル・グロタンディークは自身の著書において、任意の大きさのグロタンディーク宇宙が存在すること (任意の集合に対して、それを含むグロタンディーク宇宙が存在すること) を公理として課した[5][6]。これは現在、タルスキ=グロタンディーク集合論英語版と呼ばれている[7]

フォン・ノイマン=ベルナイス=ゲーデル集合論

置換公理と分離公理には、いずれも無限に多くの実例がある。 Montague (1961)には、1957年の博士論文で最初に証明された「ZFCが無矛盾であれば、有限個の公理でZFCを公理化することはできない」という結果が含まれる。一方、フォン・ノイマン=ベルナイス=ゲーデル集合論英語版(NBG)は、有限個の公理で公理化することができる。 NBGには真のクラスと集合が含まれるが、集合は別のクラスの元になることができる任意のクラスであるとされる。 NBGとZFCはクラスに言及しておらず、一方の理論で証明できる定理がもう一方の理論でも証明できるという意味で、等価な集合論であるといえる。

モース-ケリー集合論

モース-ケリー集合論を参照。

新基礎集合論

新基礎集合論を参照。

脚注

  1. ^ Kunen, Kenneth (2009). The foundations of mathematics. London: College Publications. ISBN 978-1-904987-14-7. OCLC 473432000. https://www.worldcat.org/oclc/473432000 
  2. ^ Mac Lane, Saunders 三好 博之, 高木 理訳 (2012) (日本語). 圏論の基礎. 丸善出版. p. 27. ISBN 978-4-621-06324-8. "圏論の主な目標の一つは,すべての群の「集合」や任意の二つの群の間の準同型の「集合」のような数学的対象全体の性質を議論することである." 
  3. ^ Williams, N. H. (1969). “On Grothendieck universes”. Compositio Mathematica 21 (1): 1–3. ISSN 0010-437X. MR 244035. http://www.numdam.org/item/CM_1969__21_1_1_0/ 2022年8月18日閲覧。. 
  4. ^ Tarski, Alfred (1938). “Über unerreichbare Kardinalzahlen” (ドイツ語). Fundamenta Mathematicae 30: 68–89. doi:10.4064/fm-30-1-68-89. ISSN 0016-2736. https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/fundamenta-mathematicae/all/30/0/111936/uber-unerreichbare-kardinalzahlen. 
  5. ^ Shulman, Michael A. (7 October 2008). "Set theory for category theory". arXiv:0810.1279 [math.CT]。
  6. ^ Grothendieck, A.; Verdier, J. L. (1972) (フランス語). Theorie des Topos et Cohomologie Etale des Schemas. Seminaire de Geometrie Algebrique du Bois-Marie 1963-1964 (SGA 4); Tome 1. Lecture Notes in Mathematics. 269. Springer Berlin, Heidelberg. p. 2. doi:10.1007/bfb0081551. ISSN 0075-8434. https://link.springer.com/book/10.1007/BFb0081551. "(UA) Pour tout ensemble x il existe un univers U tel que x ∈ U." 
  7. ^ Trybulec, Andrzej (2002). “Tarski Grothendieck Set Theory”. Journal of Formalized Mathematics (Inst. of Computer Science, Univ. of Białystok) Axiomatics. http://mizar.org/JFM/Axiomatics/tarski.html 2022年8月18日閲覧。. 

参考文献

関連項目

外部リンク




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「公理的集合論」の関連用語

公理的集合論のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



公理的集合論のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの公理的集合論 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS