連続 (数学)
![]() |
数学において、連続(れんぞく、英: continuous)および連続性(れんぞくせい、英: continuity)とは、点の集合が切れていないことを表す概念である。それの厳密な定義は極限によって定式化される。数学における連続の概念は、位相空間の間の写像に対して拡張され、開集合などといった位相的な概念を一定の方法で保つという条件によって連続性の概念が定められる。これは異なる位相空間の間の関係を表す最も基本的な枠組みである[注 1]。
一変数実関数の連続性
以下に1変数実関数の場合を主として、関数の連続性および様々な派生概念を述べる。
各点連続

連続性は、各点の周りで考えられる概念である。1変数実関数 f(x) がある点 x0 で連続であるとは、x が x0 に限りなく近づくならば、f(x) が f(x0) に限りなく近づくことを言う:
- この節には参考文献や外部リンクの一覧が含まれていますが、脚注によって参照されておらず、情報源が不明瞭です。
- 高木貞治『解析概論』(改訂第3版 軽装版)岩波書店、1983年9月。ISBN 4000051717。
- Aliprantis, Charalambos D.; Border, Kim C. (2006). Infinite Dimensional Analysis: A Hitchhiker's Guide (3rd ed.). Springer. ISBN 978-3-540-32696-0. MR2378491. Zbl 1156.46001
関連項目
- 不連続関数のページへのリンク