テイラーの定理

k = 0 (x − 1)kf(k)(1)/k! による近似

微分積分学において、テイラーの定理(テイラーのていり、英: Taylor's theorem)は、k 回微分可能な関数の与えられた点のまわりでの近似を k 次のテイラー多項式によって与える。解析関数に対しては、与えられた点におけるテイラー多項式は、そのテイラー級数を有限項で切ったものである。テイラー級数は関数を点のある近傍において完全に決定する。「テイラーの定理」の正確な内容は1つに定まっているわけではなくいくつかのバージョンがあり、状況に応じて使い分けられる。バージョンのいくつかは関数のテイラー多項式による近似誤差の明示的な評価を含んでいる。
テイラーの定理は1712年に1つのバージョンを述べた数学者ブルック・テイラー (Brook Taylor) にちなんで名づけられている。しかし誤差の明示的な表現はかなり後になってジョゼフ=ルイ・ラグランジュ (Joseph-Louis Lagrange) によってはじめて与えられた。結果の初期のバージョンはすでに1671年にジェームス・グレゴリー (James Gregory) によって言及されている[1]。
テイラーの定理は微分積分学の入門レベルで教えられ、解析学の中心的な初等的道具の1つである。純粋数学ではより進んだ漸近解析の入り口であり、より応用的な分野の数値解析や数理物理学においてよく使われている。テイラーの定理は任意次元 n, m の多変数ベクトル値関数 f: Rn → Rm にも一般化する。テイラーの定理のこの一般化は微分幾何学や偏微分方程式において現れるいわゆるジェットの定義の基礎である。
動機
![]() | この節には内容がありません。 |
一変数の場合
定理の主張
テイラーの定理の最も基本的なバージョンの正確なステートメントは次のようになる:
テイラーの定理[2][3][4] ― k ≥ 1 を整数とし関数 f: R → R を点 a ∈ R で k 回微分可能とする。すると次を満たす関数 hk: R → R が存在する:
ex(青)の x = 0 を中心とする次数 k = 1, ..., 7 のテイラー多項式 Pk(赤)による近似。 関数 f(x) = ex を区間 [−1, 1] 上で誤差が 10−5 を超えないように近似したいとしよう。この例で我々は指数関数の次の性質しか知らないとしよう:
この節には内容がありません。テイラーの定理の一般化
高次の微分可能性
関数 f: Rn → R が a ∈ Rn において微分可能であることは、次と同値である。
この項目は、解析学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めています(プロジェクト:数学/Portal:数学)。
- Taylor's theoremのページへのリンク