ワイルズによるフェルマーの最終定理の証明
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/02/03 17:17 UTC 版)

ワイルズによるフェルマーの最終定理の証明(ワイルズによるフェルマーのさいしゅうていりのしょうめい)は、イギリスの数学者であるアンドリュー・ワイルズによってなされた、楕円曲線に関するモジュラリティ定理の特殊な場合の数学的証明である。リベットの定理と組み合わせることでフェルマーの最終定理の証明を与える。フェルマーの最終定理とモジュラリティ定理(谷山・志村予想)はともに、当時の知識で証明することは現実的にほぼ不可能であると同時代の数学者の多くは考えていた。
ワイルズは1993年6月23日、「モジュラー形式、楕円曲線およびガロア表現(Modular Forms, Elliptic Curves and Galois Representations.)[1]」と題されたケンブリッジ大学の彼の講演にて最初に証明を発表した。しかし同年9月、証明に1ヶ所誤りが含まれていることが判明した。1年後の1994年9月19日、ワイルズは彼自身が「今までの職務においてもっとも重要な瞬間」と呼ぶアイデアを得た。彼はこれに関して「信じられないほど美しく…とてもシンプルでかつエレガント」なアイデアと語っており、これによって証明を数学者のコミュニティが受容する水準にまで正すことができた。この正しい証明は1995年に発表された[2]。
ワイルズの証明は代数幾何学・数論のテクニックを多用しており、これらの数学分野から派生した成果を多く含んでいる。また、彼の証明はスキームの圏や岩澤理論などの、フェルマーが知りえなかった20世紀以降のテクニックを含む現代代数幾何学の一般的な構成を使用している。
証明を含む2本の論文は129ページの長さで[3][4]、証明を構成するのにワイルズは7年を費やした。この証明について、ジョン・コーツは数論の最高の成果の1つであると、またジョン・ホートン・コンウェイは20世紀を代表する証明であると述べた[5]。ワイルズがとったフェルマーの最終定理を証明する戦略は、楕円曲線の「半安定」と呼ばれる特殊な場合についてモジュラリティ定理を証明することであり、強力な保形性持ち上げ定理というテクニックを確立し、他の数々の問題に対しても全く新しいアプローチの道を開いた。フェルマーの最終定理の解決に対して、ワイルズはナイトの称号を与えられたほか、2016年のアーベル賞等の名誉が与えられた。ワイルズがアーベル賞を受賞することが発表されたとき、ノルウェー科学文学アカデミーはワイルズの業績を「素晴らしい証明("Stunning proof")」と表現した[2]。
背景
フェルマーの最終定理
1637年に書き表されたフェルマーの予想は、n > 2 の自然数 n について
概要
ワイルズは楕円曲線をモジュラー形式の可算集合にマッチングさせることを試みた。彼はこの直接的なアプローチがうまくいかないことを発見し、代わりに楕円曲線のガロア表現をモジュラー形式にマッチングさせることで問題を変換した。ワイルズはこのマッチング(または写像)を、より具体的には環準同型と表現している。
あるいは究極的には要購読契約)
ワイルズの証明の解説
- ワイルズによるフェルマーの最終定理の証明のページへのリンク