リベットの定理
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/01/30 02:15 UTC 版)
リベットの定理(リベットのていり、Ribet's theorem)とは、モジュラー形式に関連するガロア表現の性質に関する定理である。ケン・リベットによって1986年に証明されるまではイプシロン予想(epsilon conjecture、ε-conjecture)とも呼ばれていた。谷山・志村予想とイプシロン予想からフェルマー予想(フェルマーの最終定理)が導かれるため、リベットによる証明はフェルマー予想の解決にとっても重要な一歩であった。
数学的な用語では、リベットの定理は、楕円曲線に関連するガロア表現が特定の性質を持つ場合、その曲線はモジュラーではあり得ない(同じ表現を生じさせるモジュラー形式が存在し得ないという意味で)ことを示す[1]。
主張
f を Γ0 (qN) に関する重さ2の新形式 (newform) – ここでレベル qN について q は N を割らない –[訳語疑問点] で付随する 2-次元絶対既約 mod p Galois 表現 ρf,p は qで不分岐(q ≠ p)かつ q = pで有限平坦とする。
リベットの定理は、このときレベル N 重さ2の新形式g が存在して、
リベットの定理
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/12 23:54 UTC 版)
「ワイルズによるフェルマーの最終定理の証明」の記事における「リベットの定理」の解説
1986年夏、ケン・リベットはイプシロン予想を証明することに成功し、これはリベットの定理(英語版)として知られるようになった。リベットの論文は1990年に発表された。リベットはこの証明を遂げたことで、同時にフェルマーの最終定理とリベットの定理の関係性をも証明したのである。つまり、フライが示唆したように、半安定楕円曲線に対して谷山・志村予想を証明することは、リベットの定理と組み合わせることで、フェルマーの最終定理を証明することになることが確定したのだった。 数学的な言い方をすれば、リベットの定理は楕円曲線に関連付けられたガロワ表現が(フライ曲線が持つ)ある種の性質を持つならば、その楕円曲線はモジュラーでないことを示し、そのようなガロワ表現を生じさせるようなモジュラー形式もまた存在しないことを示した。 しかしながら、このようなセールとリベットによる研究の進展とは裏腹に、上記で述べられたフェルマーの最終定理へのアプローチは広く現実的には適用不可だと考えられていた。これは谷山・志村予想が当時知られていた知識だけでは全く証明できそうにないと見られていたためである:203–205, 223, 226。例えば、ワイルズのかつての指導者であるジョン・コーツは「(谷山・志村予想は)全く証明できそうにない」:226と述べたし、ケン・リベットは「(自分自身も)証明ができないだろうと考えていた大勢のうちの1人」であるとしていた:223。
※この「リベットの定理」の解説は、「ワイルズによるフェルマーの最終定理の証明」の解説の一部です。
「リベットの定理」を含む「ワイルズによるフェルマーの最終定理の証明」の記事については、「ワイルズによるフェルマーの最終定理の証明」の概要を参照ください。
- リベットの定理のページへのリンク