谷山–志村予想
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/04/04 04:28 UTC 版)
谷山–志村予想(たにやま-しむらよそう、英: Modularity Theorem)とは、「有理数体上に定義された楕円曲線はすべてモジュラーである」という定理である。
1955年に日本の数学者の谷山豊によって提起され、1960年代以降に数学者の志村五郎によって定式化された。
この予想はアンドリュー・ワイルズとクリストフ・ブルイユ、ブライアン・コンラッド、フレッド・ダイアモンド、リチャード・テイラーらによって証明された[注釈 1]。今日ではモジュラー性定理またはモジュラリティ定理(modularity theorem)と呼ばれ[1]、20世紀数学の快挙の一つとされている[2]。ワイルズは半安定楕円曲線に対する谷山・志村予想を証明することでフェルマーの最終定理を証明した[3]。
モジュラリティ定理は、ロバート・ラングランズによるより一般的な予想の特別な場合でもある[4]。ラングランズ・プログラムは、保型形式、あるいは保型表現(適切なモジュラ形式の一般化)を、例えば数体上の任意の楕円曲線のような、より一般的な数論的代数幾何学の対象へ関連付けようとする[5]。拡張された予想のうち、ほとんどのケースは未だ証明されていない[6]が、Freitas, Le Hung & Siksek (2015) が実二次体上定義された楕円曲線がモジュラーであることを証明した。
概要
![]() |
この節の文章は日本語として不自然な表現、または文意がつかみづらい状態になっています。
|
モジュラー定理とは、志村五郎による定式化によれば[注釈 2]、任意の Q 上の楕円曲線には、ある整数 N に対するモジュラー曲線
谷山–志村予想
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/12 23:31 UTC 版)
「フェルマーの最終定理」の記事における「谷山–志村予想」の解説
詳細は「谷山–志村予想」を参照 1955年9月、日光で開催された整数論に関する国際会議で、谷山豊が提出した幾つかの「問題」を原型とする数学の予想が谷山–志村予想である。そこでは楕円曲線とモジュラー形式の間の深い関係が示唆されており、後に志村五郎によって定式化された。「すべての楕円曲線はモジュラーである」という、発表当時は注目を引かなかったこの谷山–志村予想が、のちにフェルマー予想の証明に大きな役割を果たすこととなる。 実はこの前年の1954年、ある保型形式に関するラマヌジャン予想の一部をマルティン・アイヒラー(英語版)が証明していた。そこでは「解析的ゼータ=代数的ゼータ」が示されており、谷山–志村予想の最初の実例と呼べるものだった。 このラマヌジャン予想→谷山–志村予想→ラングランズ予想→超ラングランズ予想という一連の流れ(ゼータの統一)は数論の中心的テーマの一つとなっている。
※この「谷山–志村予想」の解説は、「フェルマーの最終定理」の解説の一部です。
「谷山–志村予想」を含む「フェルマーの最終定理」の記事については、「フェルマーの最終定理」の概要を参照ください。
- 谷山–志村予想のページへのリンク