証明の発表と最終的な証明 (1993–1995)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/12 23:54 UTC 版)
「ワイルズによるフェルマーの最終定理の証明」の記事における「証明の発表と最終的な証明 (1993–1995)」の解説
1993年の6月21日-23日の間で、ワイルズは半安定楕円曲線に関する谷山・志村予想の証明、すなわちフェルマーの最終定理の証明を発表した。この発表はイギリス、ケンブリッジのアイザック・ニュートン数学研究所(英語版)で3つの講義に渡って行われた。講義の後には比較的大きな規模の記者会見が行われた。 証明の発表の後、ニック・カッツがワイルズの論文の査読を行うレフェリーの一人として指名された。カッツはレビューにおいて、ワイルズに証明に関する様々な質問をしたが、そのうちにワイルズ自身も認めるギャップが証明に含まれることがわかった。証明の重要な箇所(ある種の群の位数に上限を与える部分)の誤りであり、コリヴァキアン=フラッハ法を拡張するのに使用したオイラー系(英語版)が不完全だったというものだった。 ただし、この誤りによってワイルズの仕事が全く役に立たないものになったわけではなかった。ワイルズの証明のそれぞれの部分は単体でも意義深く革新的なものであり、証明の過程で多くの発展や新たなテクニックが見出されていたためである。この誤りに影響されたのは一箇所のみであった:289, 296–297。しかしながら、この一箇所が(誤りによって)証明されないのであれば、フェルマーの最終定理の証明も成されない。 ワイルズはギャップを取り除くのにほとんど1年を費やした。当初は自身で訂正を試みたが、のちにかつての指導学生のリチャード・テイラーと共同で訂正を試みた。しかし、ギャップを取り除くことはできなかった。1993年の終わりまでに、厳しい視線が注がれるなかでワイルズの証明が失敗したという噂が広がったが、どの程度深刻なのかに関しては知られていなかった。数学者はワイルズに彼の仕事が完全なのかそうでないのかに関わらず彼の証明を公開させるようにプレッシャーをかけ始めた。そうすることでより広い数学者のコミュニティがワイルズの仕事を精査し、利用することができるからである。しかし、誤りが訂正されるどころか、当初はそれほど深刻でないように思われたギャップは実は非常に重要で、取り除くのは容易でないように思われた。 ワイルズによれば、1994年9月19日の朝、彼はほとんど誤りの訂正を諦める寸前で、証明に失敗したことを認める瀬戸際におり、他の数学者が証明を発展させ、誤りを探すことができるように証明の詳細を発表しようとしていた。彼は証明がなぜ不完全だったのかを理解するための最後の確認をしていたが、不意に、コリヴァキアン=フラッハ法の適用の際に問題となっている部分そのものが(コリヴァキアン=フラッハ法のアプローチから得た経験を援用することで)岩澤理論の適用を可能にすることに気がついた。それぞれのアプローチは単体では不適切だが、両者のアプローチを組み合わせ、双方のアプローチのツールを使用することでギャップを取り除き、(ワイルズが最初に出した論文では証明が与えられていなかった)すべての場合に有効な類数公式(Class Number Formula, CNF)を与えた。。 "私はデスクに座ってコリヴァキアン=フラッハ法の確認をしていました。これは私が誤りを訂正できると考えていたからではなく、少なくともなぜこのアプローチが失敗したのか、その理由を説明できるようにしておきたいと考えたからです。すると、突然すばらしいひらめきが頭に浮かびました。コリヴァキアン=フラッハ法のアプローチは駄目でしたが、そうなっている理由がまさに3年前の岩澤理論のアプローチを適用するのに必要なものだったのです。コリヴァキアン=フラッハ法のアプローチの灰から問題に対する真の解答が得られたようでした。それは信じられないほど美しく、シンプルでエレガントでした。なぜそんなことを私が見逃していたのかわかりませんが、その箇所を半信半疑で20分見つめました。それからその日は一日中、部の周りを歩き回り、そしてデスクに戻ってその箇所がまだそこにあることを確認するということを繰り返しました。それはそこにありました。私は気持ちを抑えることができませんでした。とても興奮していました。私の職務のうちで、最も重要な瞬間でした。今後、あれほどのことが起こることはないでしょう。"— アンドリュー・ワイルズ。サイモン・シンによる引用。 1994年10月6日に、ワイルズは3人の同僚(ゲルト・ファルティングスを含む)に彼の新しい証明を査読するように頼んだ。1994年10月24日にワイルズは2つの論文を投稿した。「モジュラー形式、楕円曲線およびガロワ表現(Modular Forms, Elliptic Curves and Galois Representations.)」と「ある種のヘッケ環の環論的性質(Ring theoretic properties of certain Hecke algebras)」である。このうち後者の論文がワイルズがテイラーと共著したものであり、主論文で訂正が必要だった箇所を直し、必要な条件が満たされていることを証明したものである。 この2つの論文は精査され、最終的に1995年5月にAnnals of Mathematicsで発表された。この新しい証明は広く検査され、主な部分に関して正しいものであると受け入れられた。これらの論文は半安定楕円曲線に関するモジュラリティ定理を確立するものであり、遂にフェルマーの最終定理を証明するものであった。これは予想が提出されてから358年後のことであった。
※この「証明の発表と最終的な証明 (1993–1995)」の解説は、「ワイルズによるフェルマーの最終定理の証明」の解説の一部です。
「証明の発表と最終的な証明 (1993–1995)」を含む「ワイルズによるフェルマーの最終定理の証明」の記事については、「ワイルズによるフェルマーの最終定理の証明」の概要を参照ください。
- 証明の発表と最終的な証明のページへのリンク