Dot Productとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > Dot Productの意味・解説 

ドット積

(Dot Product から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/12/28 09:05 UTC 版)

数学あるいは物理学においてドット積(ドットせき、: dot product)あるいは点乗積(てんじょうせき)とは、ベクトル演算の一種で、2つの同じ長さの数列から一つの数値を返す演算。代数的および幾何的に定義されている。幾何的定義では、(デカルト座標の入った)ユークリッド空間 において標準的に定義される内積のことである。

定義

代数的定義

2つのベクトル a = [a1, a2, ..., an]b = [b1, b2, ..., bn] のドット積は下記のように定義される[1]

幾何的定義

n 次元ユークリッド空間 の幾何学的ベクトル(有向線分から位置の概念を取り除いたもの)a, b に対して、a · b

と定めるとこれは一つの実数を定める。ただし θ はベクトルを有向線分と見なしたときに a, b成す角であり、‖ · ‖ベクトルの大きさ(対応する有向線分の長さ)である。これはすなわち、有向線分 ba 方向へ正射影したものの大きさと a の大きさとの積である。これを におけるドット積あるいは標準内積という。

また一方で、ベクトルを a = [ax, ay, az], b = [bx, by, bz] のように成分表示した場合、(第二)余弦定理を用いることで

が成り立つことが示される。ゆえにこちらを定義とすることもある。

ノルム

ベクトルの自分自身とのドット積の(正の)平方根

ベクトルのノルムという。具体的にベクトルを a = [ax, ay, az] と成分表示してやれば

と書くことができる。これはベクトル a の "大きさ" である。

ドット積とノルムを使えば、2つのベクトル a = [ax, ay, az], b = [bx, by, bz] のなす角は

から求めることが可能である。逆にベクトルのなす角をこの式で定義すれば、その角はベクトルを有向線分と見なした場合のそれらの成す角そのものと一致する。

したがってドット積は(ノルムを通して)、通常のユークリッド空間における長さ、角度に一致する計量を矛盾なく定めるものである。つまり、 でユークリッドの幾何学を考えることと、ドット積を定めることとが等価であることがわかる。

性質

ドット積について

  1. a · a ≥ 0,
  2. a · a = 0 となることと a の成分がすべて零であることとが同値である。
  3. a · b = b · a,
  4. 任意の実数 k, l に対し、(ka1 + la2) · b = k(a1 · b) + l(a2 · b)

なる性質が満たされる。ゆえにドット積は内積の一種であり、ベクトルのノルムはノルムの一種である。

応用例

力学において、物体に一定の F [N] が作用して、F と角度 θ だけずれた方向に物体が x [m] 移動したとき、なされた仕事Fx cos θ [N.m] となる。これは力と変位を幾何学的なベクトルと見なした場合のドット積である。

参考文献

[脚注の使い方]
  1. ^ S. Lipschutz, M. Lipson (2009). Linear Algebra (Schaum’s Outlines) (4th ed.). McGraw Hill. ISBN 978-0-07-154352-1 

関連項目

外部リンク


「Dot product」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「Dot Product」の関連用語

Dot Productのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



Dot Productのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのドット積 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS