界磁制御への適用
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/30 14:44 UTC 版)
「電気車の速度制御」の記事における「界磁制御への適用」の解説
界磁制御方式の特徴 利点 回生ブレーキ利用が可能。 定速制御が可能。 製造費用が比較的低い。 高調波や励磁音の発生が小さい。 欠点 抵抗制御が基本のため抵抗損失があり、粘着性能に劣る。 停止までの回生ブレーキが不可(打ち切り)。 (電機子チョッパとの比較) 主回路にチョッパ制御を適用した電機子チョッパ制御は、直流電気車の性能に変革をもたらしたが、大電流を扱う制御装置が高価なことが問題であった。そこで、主回路よりも扱う電流の小さい界磁調整器に対し、サイリスタ等の半導体素子を適用する方式が開発された。すなわち、起動時における定トルク制御は旧来の抵抗制御を踏襲して製造費用を抑える一方、弱め界磁制御やブレーキ時において界磁を積極的に制御し、幅広い速度域での回生ブレーキの使用や定速度制御を可能とするものである。 さて、回生ブレーキを扱う場合、電動機が発する電圧が低いと回生電力を架線に戻すことができず、高すぎる電圧は電力施設を損傷してしまう。このため、電動機の発する電圧を一定の幅に制御しなくてはならない。電動機から得られる電圧( E {\displaystyle E\,} )は、界磁磁束( ϕ {\displaystyle \phi \,} )および回転数( n {\displaystyle n\,} )と以下の関係にある。 E = k ⋅ ϕ ⋅ n {\displaystyle E=k\cdot \phi \cdot n} すなわち、回生電圧は界磁の強さ(界磁磁束)と速度(回転数)に比例するため、速度が落ちるにつれて回生電圧は低下してやがて失効する。電機子チョッパでは低下した電圧を昇圧チョッパによって高めることで、低い速度での回生ブレーキに対応していた。これに対し界磁を制御する方法では、回転数( n {\displaystyle n\,} )の増減に合わせて、界磁磁束( ϕ {\displaystyle \phi } )を変えることで回生ブレーキを実現する。つまり、速度が高いときは界磁を弱め、速度が低くなると界磁を強めて、幅広い速度域で一定幅の電圧を得る。ただし、界磁の制御だけでは限界があり、ある速度(一般に15km/hから30km/h程度)を下回ると十分な回生電圧が得られなくなり、空気ブレーキ等に切り替えられる。 界磁を自由に変化させるには、電機子と界磁が直列の直巻電動機よりも、電機子と界磁が独立した分巻電動機が適している。その一方で、起動から力行にいたる速度制御には直巻電動機が適しているため、直巻と分巻の特性を合わせ持つ複巻電動機を用いたり、力行時と回生時で界磁の特性を直巻・分巻に使い分ける制御などが行われる。また直巻電動機の界磁を別電源で駆動・制御すれば電気的には分巻特性に当たり、全電圧を印加する元々の分巻コイルよりもインダクタンスが桁外れに低く、時定数が小さくなるので制御系としては高速応答になり安定動作となる。 代表的な方式として、次の3方式が挙げられる。これらの方式は抵抗制御を基本とするため抵抗損失は避けられないが、安価に回生ブレーキを実現できるため、多くの電車に採用された。 界磁位相制御 電動機として直巻界磁と分巻界磁の二つを持つ複巻電動機を使用し、分巻界磁は補助電源によって他励方式とするのが特徴である。このため他励界磁制御とも呼ばれる。補助電源は、制御機器の動作や空調機器などに使われるもので、直流電気車であっても一般に三相交流で供給される。この三相交流電源を励磁装置によって位相制御することにより、分巻界磁の連続制御を行う。 励磁装置には一般にサイリスタ等が用いられるが、これら半導体素子の登場以前にも磁気増幅器で位相制御し、本方式を採用した車輌もある。 界磁チョッパ制御 界磁位相制御と同様に複巻電動機を用いるが、本方式は分巻界磁を直巻界磁と並列に配置する点が特徴である。分巻界磁を流れる直流電流をチョッパ制御することで、界磁の連続制御を行う方式である。他の方式と同様、抵抗制御で起動し、界磁の連続制御は弱め界磁制御や回生ブレーキ時に用いられる。 チョッパ制御登場以前に、可変抵抗により分巻界磁の界磁調整を行う方式が存在し、本方式はこれを電力用半導体素子に置き換えたものと言える。旧来の界磁調整器に比べ保守性・応答性の面で有利であり、電機子チョッパに比べても回路が安価であったことから、多数の採用例がある。 一方、複巻電動機は構造が複雑で、負荷や架線電圧の変動に弱く、保守に手間がかかるという難点を合わせ持っていた。 界磁添加励磁制御 他の方式と異なり、製造費用・保守面で有利な直巻電動機を用いることが特徴である。直巻界磁に分流回路を設けるとともに、補助電源による励磁装置から直巻界磁に電流を添加して界磁の連続制御を行う。励磁装置は、一般に三相交流の補助電源を位相制御するが、直流の補助電源からDC-DCコンバータとして動作する形式もある。 力行時は抵抗制御により起動し、弱め界磁制御域に達すると誘導コイルに電流を分流させるとともに、励磁装置から分流回路とは逆向きの電流を添加する。この電流を徐々に弱めていくと直巻界磁の電流が減少し、連続的な弱め界磁制御を行うことができる。 一方、回生ブレーキ時においては、バイパスダイオードによって電機子電流はすべて誘導コイルに流れる。直巻界磁には励磁装置からの電流のみが流れ、直巻電動機でありながら非常に高速応答の界磁を持つ分巻電動機として制御でき、幅広い速度での安定した回生ブレーキを可能にしている。 界磁添加励磁制御の回路図。力行(全界磁)。抵抗制御で起動する。 力行(弱め界磁)。速度が上昇すると添加電流を連続制御して弱め界磁を行う。 回生ブレーキ。速度の変化に合わせて界磁を連続制御する。 電機子チョッパ制御が地下鉄車輌を中心に用いられたのに対し、これらの手法は高速運転を行う郊外電車や優等列車に用いられた。高速電車においては、界磁制御領域が広いため抵抗損失の影響は軽微である一方、回生電力は速度の二乗に比例するため、高速域での回生ブレーキ性能に優れる本方式が一般に有利となる。
※この「界磁制御への適用」の解説は、「電気車の速度制御」の解説の一部です。
「界磁制御への適用」を含む「電気車の速度制御」の記事については、「電気車の速度制御」の概要を参照ください。
- 界磁制御への適用のページへのリンク