抽象代数学と「概念の数学」
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/27 07:21 UTC 版)
「エミー・ネーター」の記事における「抽象代数学と「概念の数学」」の解説
抽象代数学における最も基本的な対象のうちの2つは群と環である。 群は元の集合と1つの演算からなる。演算は第一の元と第二の元から第三の元を与える。演算は群となるためにある条件を満たさねばならない。その条件は、演算が閉じていること(集合の任意の2元に対し、それらから得られる元も集合の元でなければならない)、結合的であること、単位元(任意の元と演算したときにもとのままである(例えば数に 0 を足したり 1 を掛けたりしたときのように)ような元)を持つこと、そして、任意の元に対し逆元があること、である。 環は同様に元の集合と、今度は2つの演算からなる。1つめの演算により集合は群になり、2つ目の演算は結合的かつ1つ目の演算に対し分配的である。2つ目の可換であってもなくてもよい。可換であるとは、第一の元と第二の元に演算を施しても第二の元と第一の元に演算を施しても同じ結果になる、つまり元の順序が問題にならないということである。0 でないすべての元 a が乗法逆元(ax = xa = 1 なる元 x)をもつとき、環は可除環と呼ばれる。(可換)体は可換な可除環として定義される。 群はしばしば群の表現を通して研究される。最も一般的な形では、それは1つの群、1つの集合、そしてその群の集合への作用からなる。作用とは、群の元と集合の元から集合の元を得る演算である。ほとんどの場合、集合はベクトル空間で、群はベクトル空間の対称性を表す。例えば、空間の rigid な回転を表す群がある。これは空間の対称性の一種である、なぜならば空間は回転されたとき空間の中の物体の位置は変わるかもしれないが空間自身は変わらないからである。ネーターは物理学における不変量に関する彼女の研究においてこの種の対称性を用いた。 環を研究する強力な方法の1つはその加群を用いることである。加群は、1つの環と、1つの集合、これは環の台集合とは異なることが多く加群の台集合と呼ばれる、と、加群の台集合の元の対に対する演算と、環の元と加群の元から加群の元を得る演算からなる。加群の台集合とその演算は群をなす。加群は群の表現の環論版である:第二の環の演算と加群の元の対の演算を無視すれば群の表現が決定される。加群の真の有用性は存在する加群の種類と相互作用が環自身からは明白ではない方法で環の構造を明らかにすることにある。これの重要な特別な場合は多元環(代数)である。(代数という単語は数学の主題である代数学とその代数学で研究されるある対象の両方を意味する。)多元環は、2つの環と、各環の1つずつの元から第二の環の元を得る演算からなる。この演算により第二の環は第一の環上の加群となる。しばしば第一の環は体である。 「元」や「結合算法」などの術語は極めて一般なものなのであって、多くの現実世界や抽象的な状況に対して適用可能である。ひとつ(あるいはふたつ)の算法に対する上記の規則全てを満足するモノからなる任意の集合が、定義により、群(あるいは環)であって、群(あるいは環)に関する全ての定理を満足する。整数の全体、そして加法と乗法というふたつの算法は単に一つの例でしかない。例えば、元として計算機データ型の語を考え、第一の算法として排他的論理和、第二の算法として論理積をとることもできる。抽象代数学における定理は、一般に示され、多くの系を支配するものであるがゆえに、強力である。極めて少ない性質によって定義された対象について分かることは少ないのではないかと想像するかもしれないが、正確にはそこにはネーターのギフト「性質からなる集合が与えられたところから最大限のものを発見すること、あるいは逆に、特定の観測状況に対してそれを合理化する本質的な性質からなる最小限の集合を発見すること」が根底に存在していた。大半の数学者がそうであったのと異なり、ネーターは既知の例を一般化することによる抽象化を行うのでなく、それよりは、抽象化そのものに対して直接に取り組んだ。ファン・デル・ヴェルデンは自身の記したネーターの死亡記事において以下のように振り返る: The maxim by which Emmy Noether was guided throughout her work might be formulated as follows: "Any relationships between numbers, functions, and operations become transparent, generally applicable, and fully productive only after they have been isolated from their particular objects and been formulated as universally valid concepts."(訳文: エミー・ネーターが彼女の仕事を通じて従った格言を以下のようにまとめることができるだろう:「数や函数および算法の間に成り立つ任意の関係性は、それら特定の対象から離れて、普遍的に有効な概念として定式化されてさえしまえば、透過的で一般に適用可能であって完全に生産的である。」) これがネータに特徴的であったところの begriffliche Mathematik(「純粋概念の数学」)である。この数学様式は、結果的にほかの(特に抽象代数学という新たな分野の)数学者たちにも受け入れられて行った。
※この「抽象代数学と「概念の数学」」の解説は、「エミー・ネーター」の解説の一部です。
「抽象代数学と「概念の数学」」を含む「エミー・ネーター」の記事については、「エミー・ネーター」の概要を参照ください。
- 抽象代数学と「概念の数学」のページへのリンク