同位体および元素合成
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/19 07:34 UTC 版)
詳細は「ベリリウムの同位体」を参照 ベリリウムの安定同位体は9Beのみであり、したがってベリリウムはモノアイソトピック元素である。9Beは恒星において宇宙線の陽子が炭素などのベリリウムよりも重い元素を崩壊させることによって生成され、超新星爆発によって宇宙中に分散する。このようにして宇宙中にチリやガスとして分散した9Beは、分子雲を形成する原子のひとつとして星形成に寄与し、新しくできた星の構成元素として取り込まれる。 10Beは、地球の大気に含まれる酸素および窒素が宇宙線による核破砕を受けることで生成される。宇宙線による核破砕によって生成したベリリウム同位体の大気中の滞在時間は成層圏で1年程度、対流圏で1か月程度とされており、その後は地表面に蓄積する。10Beはベータ崩壊によって10B になるものの、その136万年という比較的長い半減期のために10Beとして地表面に長期間滞留し続ける。そのため、10Beおよびその娘核種は、自然界における土壌の侵食や形成、ラテライトの発達などを調査するのに利用される。また、太陽の磁気的活動が活発化すると太陽風が増大し、その期間は太陽風の影響によって地球に到達する銀河宇宙線が減少するため、銀河宇宙線によって生成される10Beの生成量は太陽活動の活発さに反比例して減少する。したがって10Beは、同様に宇宙線によって生成される14C(炭素14)とともに太陽活動の変動を記録しているため、極地方のアイスコア中に残された10Beおよび14Cの解析をすることで、過去の太陽活動の変遷を間接的に知ることができる。 核爆発もまた10Beの生成源であり、核爆発によって発生した高速中性子が大気中の二酸化炭素に含まれる13Cと反応することによって生成される。これは、核実験試験場の過去の活動を示す指標のひとつである。 半減期53日の同位体7Beもまた宇宙線によって生成され、その大気中の存在量は10Beと同様に太陽活動と関係している。8Beの半減期はおよそ7×10−17 sと非常に短く、この半減期の短さはベリリウムよりも重い元素がビッグバン原子核合成によっては生成されなかった原因ともなっている。すなわち、8Beの半減期が非常に短いためにビッグバン原子核合成段階の宇宙において核融合反応に利用できる8Beの濃度が非常に低く、そのような低濃度の8Beが4Heと核融合して炭素を合成するにはビッグバン原子核合成段階の時間が不十分であったことに起因する。イギリスの天文学者であるフレッド・ホイルは、8Beおよび12Cのエネルギー準位から、より多くの時間を元素合成に利用することが可能なヘリウムを燃料とする恒星内であれば、いわゆるトリプルアルファ反応と呼ばれる反応によって炭素の生成が可能であることを示し、それによって超新星によって放出される塵とガスから炭素を基礎とした生命の創生が可能となることを明らかにした。 ベリリウムのもっとも内側の電子は化学結合に関与することができるため、7Beの電子捕獲による崩壊は、化学結合に関与することのできる原子軌道から電子を奪うことによって起こる。その崩壊確率はベリリウムの電子構成に大部分を依存しており、核崩壊においてまれなケースである。 既知のベリリウム同位体のうち、もっとも半減期が短いものは中性子放出によって崩壊する13Beであり、その半減期は2.7×10−21 sである。6Beもまた非常に半減期が短く、5.0×10−21 sである。エキゾチック原子核である11Beおよび14Beは、中性子が原子核の周りを周回する中性子ハローを示すことが知られている。この現象は、液滴模型において、古典的なトーマス・フェルミ理論による表面対称エネルギーの影響によって、中性子の分布が陽子分布よりも外部に大きく広がっていると理解することができる。 ベリリウムの不安定な同位体元素は恒星内元素合成においても生成されるが、これらは生成後すぐに崩壊する。 なお、原子番号が偶数で、安定同位体が1つしかない元素はベリリウムだけである。通常、原子番号が20以下の元素においては、ベーテ・ヴァイツゼッカーの質量公式のペアリング項に現われるように、陽子と中性子が偶数であるものは奇数のものと比較して結合エネルギーが大きく安定であるのに加え、対称性項に現われるように陽子数と中性子数が同数のものほどのため安定となるが、陽子数および中性子数がともに4である8Beは例外的に不安定である。これは、8Beの崩壊生成物である4Heが魔法数を取っているため非常に安定であることによる。
※この「同位体および元素合成」の解説は、「ベリリウム」の解説の一部です。
「同位体および元素合成」を含む「ベリリウム」の記事については、「ベリリウム」の概要を参照ください。
- 同位体および元素合成のページへのリンク