胚の制御ネットワーク
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/10 15:32 UTC 版)
「進化発生生物学」の記事における「胚の制御ネットワーク」の解説
ツールキットのタンパク質産物は、重複および改変ではなく、多面的なモザイクによって再利用され、多くの独立した発生過程で不変的に適応され、多くの異なる身体構造にパターンを与える。ツールキット遺伝子は、大きく複雑な調節配列をもつ。例えば、ショウジョウバエのロドプシン遺伝子は、わずか数百塩基対の長さの調節配列を有するが、アイレスシス遺伝子の調節領域は、7000塩基対以上に6つのシス調節エレメントを含む。関与する制御ネットワークはしばしば非常に大きい。各調節タンパク質は、数百の調節配列を制御する。例えば、ショウジョウバエの67個の転写因子は、それぞれ平均124個の標的遺伝子を制御する。この複雑さはすべて、胚の発生に関与する遺伝子を、正確なタイミングで、正確な場所で、正確にスイッチをオン/オフすることを可能にする。スイッチをオンオフされる遺伝子のいくつかは、構造遺伝子であり、酵素をつくったり、胚の組織および器官を直接形成する。しかし、他の多くの遺伝子はそれ自体が調節遺伝子であるため、スイッチを入れることはしばしば正確にタイミングを取った切替えのカスケードであり、発生中の胚で別の発生プロセスを開始することになる。 このようなカスケード調節ネットワークは、ショウジョウバエの胚の発生において詳細に研究されている。 若い胚は、ラグビーボールのような形の楕円形である。 少数の遺伝子が、胚の長軸に沿って濃度勾配をつくり出す。 初期胚では、ビコイドbicoidおよびハッチバックhunchback遺伝子が、前端付近で高濃度であり、将来の頭および胸郭にパターンを与える。 コーダルcaudal や ナノスnanos遺伝子は後端付近で高濃度であり、後ろの腹部にパターンを与える。 これらの遺伝子の作用は相互作用する。 例えば、Bicoidタンパク質は尾部のメッセンジャーRNAの翻訳をブロックするので、尾部タンパク質濃度は前端部で低くなる。 コーダルは後ろ側でハエの後肢部分を生成する遺伝子をスイッチを入れるが、後端部で最も集中している。 ビコイドBicoid、ハッチバックHunchbackおよびコーダルCaudalタンパク質は、giant遺伝子、knirps遺伝子、Kruppel遺伝子、tailless遺伝子などのギャップ遺伝子の転写を、縞状のパターンの発現で制御し、セグメントとなる構造の最初の段階をつくり出す。 これらのタンパク質は、次に、ペアルールpair-rule遺伝子を制御し、次の段階で、胚の長軸に7つのバンドをつくり出す。最後に、刻み目のようなセグメントポラリティ segment polarity遺伝子は、7つのバンドのそれぞれを2つに分割し、14のセグメントをつくり出す。 このプロセスは、異なる種の動物において、ツールキット遺伝子は深い相同性をもち、つまり塩基配列が正確に保存されており、同じ機能をもっていることを説明する(例えば、マウスのタンパク質がショウジョウバエの発育を制御でき、その相同性がわかる)。 転写因子とシス調節エレメント、またはシグナル伝達タンパク質と受容体の相互作用は、複数の用途で使われるため、ほぼすべての変異が有害であるため、変わらず保存されるのである。
※この「胚の制御ネットワーク」の解説は、「進化発生生物学」の解説の一部です。
「胚の制御ネットワーク」を含む「進化発生生物学」の記事については、「進化発生生物学」の概要を参照ください。
- 胚の制御ネットワークのページへのリンク