経年劣化の問題
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/08/16 01:10 UTC 版)
「ピット (核兵器)」の記事における「経年劣化の問題」の解説
プルトニウムガリウム合金などの金属相プルトニウムは主に腐食と自己照射により劣化していく。 プルトニウムは化学的に反応性が高いが、乾燥空気中では表面に二酸化プルトニウムの不動態層を作るため、腐食速度は年間 200 nm 程度になる。しかし、湿った空気中では不動態層が侵されて室温での腐食速度は200倍(0.04mm/年)、100℃では10万倍(20㎜/年)にもなる。プルトニウムは水から酸素を奪って酸化し、放出された水素を吸着したり水素化プルトニウムを生成する。水素化プルトニウムの相は20cm/時もの速度で成長し、薄い外殻はたちまち腐食してしまう。水の存在により、二酸化プルトニウムは非化学量論的酸化物(最大で PuO2.26)を生成する。プルトニウムの小片は自己発火性があるが、これは三酸化二プルトニウム(Pu2O3)の層が速やかに酸化されて二酸化プルトニウムとなり、このとき発生する熱によって熱容量の小さい小片は簡単に発火点(約 500 ℃)に達するためである。 自己照射はプルトニウムのアルファ崩壊により起こる。プルトニウム239はアルファ崩壊によりアルファ粒子(すなわちヘリウム原子核)を放出してウラン235となる。 アルファ粒子は5MeVほどのエネルギーを持っており、結晶中を10 μmほど進んだ後、停止しところで周囲の原子から電子を奪ってヘリウム原子になる。また、不純物として含まれるプルトニウム241はベータ崩壊によりアメリシウム241となり、さらにアルファ崩壊によりネプツニウム237となる。 アルファ粒子は自らのエネルギーを電子に与えて止まるが、このとき熱が発生する。より重いウラン原子は約 85 keV のエネルギーを持つが、その 3/4 ほどのエネルギーによって結晶格子内で 12 nm ほど弾き出される。この結晶格子の乱れはさらに20,000個の原子に影響し、90%ほどは熱的に励起されてその場に留まり、残り10%ほどが結晶格子から弾き出されてしまう。この結果、欠陥が生じた場所では再結合やマイグレーションが起こり、2,500箇所ほどのフレンケル欠陥と数 ps ほどの局所的な発熱が生じる。兵器級プルトニウムではすべての原子が10年に1回程度の割合で弾き出される。 極低温ではアニーリングが起きないため、自己放射によりα相プルトニウムは膨張(スウェリング)し、δ相は大きく収縮し、β相は少し収縮する。結晶欠陥が増えるため電気抵抗も大きくなる。いずれの相も、長時間経過すると平均密度 at 18.4 g/cm3 の非晶質状に変化してしまう。一方、常温ではほとんどの損傷はアニーリングにより修復される。200 K(-73 ℃)以上では空孔が移動するようになり、400 K(133 ℃)付近では格子間・空孔間の再結合が起こるようになるためである。プルトニウムは常温で保管されていれば40年以上経過しても目立った損傷は見られない。 保管期間50年では、典型的な試料ではヘリウムが2000ppm、アメリシウムが3700ppm、ウランが1700ppm、ネプツニウムが300ppmほど含まれる。プルトニウムピット 1キログラム中に200 cm3 のヘリウムが含まれることになり、このヘリウムを同じピットと同じ体積の容器に入れると3気圧になる量である。ヘリウムは空孔と同じように結晶中を移動したり、空孔にトラップされたりする。ヘリウムが入った空孔は合体して気泡となり、スウェリングを生じる。気泡状のものよりも空隙状のものの方が発生しやすい。
※この「経年劣化の問題」の解説は、「ピット (核兵器)」の解説の一部です。
「経年劣化の問題」を含む「ピット (核兵器)」の記事については、「ピット (核兵器)」の概要を参照ください。
- 経年劣化の問題のページへのリンク