熱力学、統計力学、電磁気理論
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/09 06:26 UTC 版)
「物理学の歴史」の記事における「熱力学、統計力学、電磁気理論」の解説
1850年から1870年にかけてのエネルギーについての数理物理学の確立は、前時代の物理学の適用範囲を大きく拡張し、物質世界がどのように動いているのかという伝統的な疑問に挑戦できるようになった。ピエール=シモン・ラプラスの天体力学に関する研究が、基本的で完全に可逆な法則に従う決定論的力学観を強化したのに対し、エネルギー、特に熱流の研究は宇宙の決定論的見方に疑問を投げかけた。ラザール・ニコラ・マルグリット・カルノー、ニコラ・レオナール・サディ・カルノーとエミール・クラペイロンによるエネルギーの理論やジェームズ・プレスコット・ジュールによる力学的、化学的、熱的、電気的仕事の互換性の実験、また彼自身によるCambridge Mathematical Triposでの数理分析の訓練等を元にして、グラスゴー大学の物理学者ウィリアム・トムソンらは、異なった形のエネルギーの変換やエネルギー全体の保存に関連した新しい数理物理学を確立した(熱力学の第1法則として知られる)。彼らの研究はすぐにドイツの物理学者ユリウス・ロベルト・フォン・マイヤーや生理学者ヘルマン・フォン・ヘルムホルツが行っていた力の保存に関する類似の研究と結びつけられた。 トムソンは数学的なヒントをジョゼフ・フーリエの熱流の研究から得たが、経時によるエネルギーの消失(熱力学の第2法則として知られる)は、物理学の基本的な原理であると信じていた。これは、トムソンとピーター・ガスリー・テイトの影響力の大きな著書 Treatise on Natural Philosophyで詳しく説明されている。しかし、トムソンが熱力学と呼んだものの別の解釈がドイツの物理学者ルドルフ・クラウジウスの研究によって確立された。彼が考案し、ルートヴィッヒ・ボルツマンとジェームズ・クラーク・マクスウェルが発展させた統計力学では、エネルギーや熱は粒子の運動の速度と考えられる。粒子の統計的な状態とその状態のエネルギーは相互に関連付けられ、エネルギーの消失は粒子が乱雑な状態に向かう傾向であると再解釈される(状態の乱雑さは、「エントロピー」という用語で表される)。熱力学の第2法則の統計的な解釈と絶対的な解釈の対立は何十年も続いた論争を生み出し(「マクスウェルの悪魔」等が知られている)、20世紀初頭に原子の振舞いが確かに理解されるまで、決定的には解決されなかった。 一方、新しいエネルギーの物理学は、特に場の概念の導入と1873年のマクスウェルのTreatise on Electricity and Magnetismにより、電磁現象の分析の仕方を変え、カール・フリードリッヒ・ガウスやヴィルヘルム・ヴェーバーらによる理論的な研究の基礎となった。粒子の運動の中への熱の閉じ込めやニュートン力学への電磁場の概念の付加は、観測された物理現象に対する理論的土台を大幅に強固することになった。光は「エーテル」を通って波の形でエネルギーを伝達するという予測とヘルムホルツの弟子であるハインリヒ・ヘルツによる1888年の電磁波の発見に基づくその予測の実証は、理論物理学の大きな成果であり、場の概念に基づくより基礎的な理論がすぐに発見されるという期待が高まり、電磁波の伝播の研究がその直後1890年代に始まった。ニコラ・テスラ、ジャガディッシュ・チャンドラ・ボース、グリエルモ・マルコーニらによって実験が行われ、ラジオの発明に繋がった。
※この「熱力学、統計力学、電磁気理論」の解説は、「物理学の歴史」の解説の一部です。
「熱力学、統計力学、電磁気理論」を含む「物理学の歴史」の記事については、「物理学の歴史」の概要を参照ください。
- 熱力学、統計力学、電磁気理論のページへのリンク