熱力学の第1法則とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 熱力学の第1法則の意味・解説 

エネルギー保存の法則

(熱力学の第1法則 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/04 10:03 UTC 版)

物理学
ウィキポータル 物理学
執筆依頼加筆依頼
物理学
ウィキプロジェクト 物理学
カテゴリ 物理学

エネルギー保存の法則(エネルギーほぞんのほうそく、: law of the conservation of energy)とは、「孤立エネルギーの総量は変化しない」という物理学における保存則の一つである。エネルギー保存則とも呼ばれる。

概要

任意の異なる二つの状態について、それらのエネルギー総量の差がゼロであることをいう。

例えば、取り得る状態が全て分かっているとして、全部で 3 つの状態があったとき、それらの状態のエネルギーを A, B, C と表す。

エネルギー保存の法則が成り立つことは、それらの差について、

AB = 0, BC = 0, CA = 0

が成り立っていることをいう。

時間が導入されている場合には、任意の時刻でエネルギー総量の時間変化量がゼロであることをいい、時間微分を用いて表現される。

エネルギー保存の法則は、物理学の様々な分野で扱われる。特に、熱力学におけるエネルギー保存の法則は熱力学第一法則 (: first law of thermodynamics) と呼ばれ、熱力学の基本的な法則となっている。

熱力学第一法則は、熱力学において基本的な要請として認められるものであり、あるいは熱力学理論を構築する上で成立すべき定理の一つである。第一法則の成立を前提とする根拠は、一連の実験や観測事実のみに基づいており、この意味で第一法則はいわゆる経験則であるといえる。

一方でニュートン力学量子力学など一般の力学において、エネルギー保存の法則は必ずしも前提とされない。

歴史

概要

ルネ・デカルトゴットフリート・ライプニッツが、それぞれの仕方でこれを主張し、それぞれの支持者によって議論が長年に渡り行われた。

19世紀の中ごろ、ユリウス・ロベルト・フォン・マイヤージェームズ・プレスコット・ジュールヘルマン・フォン・ヘルムホルツらによって、「力学的化学電気などのエネルギーは、それぞれの形態に移り変わるが、エネルギーの総和は変化しない(保存される)」と主張された[1]

20世紀にアルベルト・アインシュタインによって、質量とエネルギーの等価性という考え方が提唱され、別の形での保存が主張されたが、その有効性や有効範囲については、疑問視されることも多かった。

現在ではエネルギー保存の法則は、しばしば「最も基本的な物理法則の一つ」と考えられている。多くの物理学者が、自然はこの法則にしたがっているはずだ、と信じているのである。

活力論争

ルネ・デカルトは、1644年に出版した自身の著作『哲学の原理』(Principia Philosophiæ )[2]、宇宙においてquantitas motus(運動の量)の総和が保たれている、と主張した。

Deum esse primariam motus causam: et eandem semper motus quantitatem in niverso conservare. — Principia philosophiae, Pars secunda, 36(デカルト『哲学の原理』第二章 36)

デカルトが主張した quantitas motusquantity of motion, 運動の量)という概念は、現代の運動量とある程度似てはいるが、厳密には異なる概念である[3]。デカルトは「質量」という概念を持っていなかったし、デカルトは速度の大きさだけを重視し、向きが変わることについては考慮していなかった[3]。したがって、デカルトの quantitas motus を現代の運動量に対応する量と見なすことはできない。

ゴットフリート・ライプニッツは、運動の量というのを初めて数式で表現してみようと試みたが、デカルトとは異なって mv2 の総和が保存されている、と主張した。ライプニッツはこの量を vis vivaliving force, 活力)と呼んだ。この vis viva という概念は、釣り合いなどの場面で想定される動きとしては見えない vis mortuadead force, 潜在的な力)と対比しつつ置かれた概念である。

デカルトの考え方を支持する人々と、ライプニッツの考え方を支持する人々で議論が起こるようになった。これを「活力論争 (vis viva controversy)」という。議論は長年に渡って続いた。18世紀半ばになって、ジョゼフ=ルイ・ラグランジュジャン・ル・ロン・ダランベールらが、両概念の明確化を試み、それらを区別したことによって、ようやく論争は沈静化した。

「エネルギー」の定義

1807年にトマス・ヤングは、vis viva という用語で表されていた運動の概念を、"energy" と呼んだ。energyギリシア語ἐνέργεια: energeia, エネルゲイア)という語を基にした造語である。ギリシャ語のἐνέργεια (energeia ) というのは語の構成としては εν + εργον (en +ergon ) であり、εργον (ergon ) は「仕事」、εν(en —) は「~の状態」という意味である。よって「仕事をしている状態」といったような意味である。アリストテレス哲学において ἐνέργεια は、ものが持つ「可能態」の中から現実化された「現実態」を意味する。つまり、energy という用語を用いている背景には、眼には見えない「活力」が具体的な「仕事」に変化したのだ、という発想がある。

ヤングが energy という用語を用いたからといって、それが人々にすぐに用いられるようになったわけでもなく、人々の間に定着するようになったのは、あくまで後のことである。vis viva 相当の概念は、19世紀半ばでもしばしば、英語圏では "force" と呼ばれていたし、ドイツ語圏では „Kraft” と呼ばれていた。

現代的な意味で energy の語が用いられるようになったのは、ヤングより後のことで、1850年頃にウィリアム・トムソンによって kinetic energy運動エネルギー)、1853年にウィリアム・ランキンによって potential energy位置エネルギー)の語が定義された[4]

19世紀前半のドイツ自然哲学

19世紀前半のドイツ自然哲学では、「破壊されることもなく、形態が様々に変換する根源的な何か」を „Kraft”(力)と呼んでいた。この自然哲学概念は、現在の「エネルギー保存の法則」という概念の成立に大きな影響を与えている。

力学的仕事と熱に関する保存則の発見

19世紀の中ごろ、ロベルト・マイヤージェームズ・プレスコット・ジュールヘルマン・フォン・ヘルムホルツらが、それぞれ独立して「エネルギー保存の法則」という考え方に辿りついた[1]

マイヤーは、ドイツの医者で、船医としてジャワ島に行った時に熱量とエネルギーとの関係を考察するようになった。船が熱帯航海すると水夫らの静脈血液の赤みが増すことに気付き、気温が上昇したことで体温維持のために酸素が使われる量が減るのだ、と解釈した。

そして1842年、「熱」と「仕事」の関係に関する論文 „Bemerkung über die Kräfte der unbelebten Natur”[注 1]を発表した[5]

ジュールは1843年に熱の仕事当量測定を行い、その後も様々な方法で熱の仕事当量を計測した。

ヘルムホルツは、サディ・カルノーエミール・クラペイロン、ジュールらの仕事について整理し、1847年に著した „Über die Erhaltung der Kraft”[注 2]で様々な状況でエネルギー保存の法則が成り立つことを示した[6]

マイヤーやジュールが熱の仕事当量に関する考察をした頃は、1798年のベンジャミン・トンプソン(ランフォード伯)による指摘などがあったものの、アントワーヌ・ラヴォアジエピエール=シモン・ラプラスに始まるカロリック説が有力であり、熱は物質であると見なされ、熱は単独で保存されると考えられていた。そのため、熱が仕事に変わり得ることの発見とその事実の定量的評価をすることは、熱力学第一法則を構成する上で重要な仕事だった。

1850年、ルドルフ・クラウジウスは論文 „Über die bewegende Kraft der Wärme”[注 3]の中で熱力学第一法則について完全な形で述べた[7][8]

ジュール (1818 - 1889) は、重りをある高さまで持ち上げて落とすことで上記の装置 (今日 Joule's Apparatus と呼ばれる)の撹拌翼を回転させ、水に摩擦熱を与えることによる温度変化を調べた。その結果、仕事は等価なものであると考えられるようになり、エネルギー保存の法則の成立へと繋がった。

質量とエネルギーの等価性

1905年にアルベルト・アインシュタインは、Annus Mirabilis papers の一つの „Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?”[注 4]において、質量エネルギーが交換可能なのではないか、という提案を行った[9][10]。これをきっかけとして、物理学が大きく変容していくことになった。「エネルギー」や「物質」という概念自体が大きく変わっていくことになったのである。

特殊相対性理論において、質量はエネルギーの一形態であり、E=mc² という式の関係が成り立っている。したがって相対論の立場では、エネルギー保存の法則は「質量を含めたエネルギーの総和が保存されている」という主張になる。

他の物理学の様々な主張同様に、このアインシュタインの主張も最初は受け入れられなかったり疑問視されたが、原子核反応や電子対生成などの実験において成立していることが確認されると、アインシュタインの考えが次第に受け入れられるようになっていった。

なおそれに伴って、「質量保存の法則は(厳密に言えば)成り立っていない」と考えられるようになった。特に、原子核反応を扱う場合においては、質量のエネルギーへの変換は無視できないほど大きく、質量は保存されていない、として計算するようになっている[注 5]

ただし、この法則を一応受け入れるとしても、一体どの程度まで受け入れてよいのかということについて見解はバラバラであった。例えばニールス・ボーアは、ベータ崩壊をエネルギー保存の法則が成立していない事例だと考えていた[11]

ただしそのような状況の中で、1932年にヴォルフガング・パウリエンリコ・フェルミが、ベータ崩壊の事例でも、仮にエネルギー保存の法則が成立していると仮定して計算したところ、中性の粒子が存在しているだろう、と予想することができた。彼らはその粒子の存在を主張したものの具体的な物証は無く、長らく認められなかったが、1956年になり実験によってその粒子(ニュートリノ)が確認された。この出来事によって、有効範囲については疑問視されることも多かったものの、エネルギー保存の法則が成り立つと仮定してみることが、科学発見につながるひとつの指針にもなり得ることが知られるようになった。

対称性

1918年、エミー・ネーター論文 „Invariante Variationsprobleme”[注 6]を出版した[12][13]。この論文の中で、ネーターが1915年に得た、今日ネーターの定理と呼ばれる定理証明が与えられた。ネーターの定理から、作用積分が不変であるような無限小変換が存在する場合、系はその変換に対して対称であるという。このとき系の対称性に対応した量が保存する。特にエネルギー保存の法則は、時間の並進対称性に対応していることが知られる[14]

各分野において

熱力学

熱力学におけるエネルギー保存の法則は、熱力学第一法則である。熱力学第一法則は次のように表現される。

この節は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。このテンプレートの使い方
出典検索?"エネルギー保存の法則" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL
2012年11月

「《エネルギー保存の法則》が成り立つ」ということは「(有用な)エネルギーはいくら使ってもなくならない」という意味ではない(第二種永久機関の否定)。エネルギー保存の法則は、エネルギー問題においては直接的には第一種永久機関の否定という面でかかわりを持つ。

脚注

注釈

  1. ^ Remark upon the Forces of the Inanimate Nature, 無生物界の力についての所見。
  2. ^ On the Conservation of the Force.
  3. ^ On the Moving Force of the Heat.
  4. ^ このドイツ語を英語に翻訳すると、"Does the inertia of a body depend upon its energy-content? " となる。
  5. ^ 厳密には成立していないが、ごく平凡な古典力学的な状況設定や、ごく平凡な化学反応においては、質量の増減は無視できるほど小さく、成立しているとして扱っても問題ないので、現在でも“質量保存則”は様々な計算をするための簡便な近似として用いられている。
  6. ^ Invariant Variation Problems.
  7. ^ 一般の内積と区別して、しばしばドット積(点乗積)と呼ばれる。
  8. ^ ポテンシャル・エネルギーとも書かれる。
  9. ^ 方程式から明らかなように、操作の途中においては粒子の運動エネルギーを変化させてよい。
  10. ^ ポテンシャル  Renatus Cartesius (ラテン語), Principia philosophiae, ウィキソースより閲覧。 
  11. ^ a b Daniel Garber (1992). “Descartes' Physics”. In John Cottingham. The Cambridge Companion to Descartes. Cambridge University Press. pp. 310–319. ISBN 0-521-36696-8. http://www.cup.es/us/catalogue/catalogue.asp?isbn=9780521366960 
  12. ^ William John Macquorn Rankine C.E.F.R.S.E.F.R.S.S.A. (1853), “On the general Law of the Transformation of Energy”, Philosophical Magazine, 4 5 (30): 106-117, doi:10.1080/14786445308647205, http://www.tandfonline.com/doi/abs/10.1080/14786445308647205 
  13. ^ J. R. Mayer (1842), Justus Liebig (Editor), “Bemerkung über die Kräfte der unbelebten Natur”, Annalen der Chemie und Pharmacie 42: 233-240, https://books.google.co.jp/books?id=l4w8AAAAIAAJ&pg=RA2-PA233&redir_esc=y&hl=ja .
  14. ^ Hermann von Helmholtz (1847), Über die Erhaltung der Kraft, G. Reimer Berlin, http://edoc.hu-berlin.de/ebind/hdok/h260_helmholtz_1847/PDF/h260_helmholtz_1847.pdf .
  15. ^ R. Clausius (1850), “Über die bewegende Kraft der Wärme , Part I, Part II”, Annalen der Physik 79: 368–397, 500–524 .
  16. ^ R. Clausius (1851), “On the Moving Force of Heat, and the Laws regarding the Nature of Heat itself which are deducible therefrom”, Phil. Mag., 4 2: 1–21, 102–119, https://archive.org/details/londonedinburghd02lond . Google Books. Clausius 1850 の英訳版。
  17. ^ A. Einstein, Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?, Annalen der Physik 18: pp.639–641, 1905.
  18. ^ A. Einstein, Does the Inertia of a Body depend upon its Energy-Content?, 1905. John Walker (fourmilab.ch) による英訳版 (pdf)。
  19. ^ 武谷 三男, 豊田 利幸, 中村 誠太郎『現代物理学(原子核)』 第八巻、岩波書店〈岩波講座〉、1959年、197–201頁。 
  20. ^ E. Nöther (1918), “Invariante Variationsprobleme”, Nachrichten von der königliche Geselschaft der Wissenschaften zu Göttingen: 235-257, http://www.physics.ucla.edu/~cwp/articles/noether.trans/german/emmy235.html .
  21. ^ E. Noether (1918), Invariant Variation Problems, http://arxiv.org/abs/physics/0503066 . M. A. Tavel による英訳。
  22. ^ 須藤靖『解析力学・量子論』(初)東京大学出版会、2008年、39-41頁。ISBN 978-4-13-062610-1 
  23. ^ 田崎晴明『熱力学 現代的な視点から』培風館、2000年、59頁。ISBN 4-563-02432-5 
  24. ^ 久保亮五 編『大学演習 熱学・統計力学』(修訂)裳華房、1998年、5頁。ISBN 4-7853-8032-2 
  25. ^ 朝永振一郎『物理学読本』(第2)みすず書房、1981年、74頁。ISBN 4-622-02503-5 

関連項目

外部リンク




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「熱力学の第1法則」の関連用語







熱力学の第1法則のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



熱力学の第1法則のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのエネルギー保存の法則 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS