ねつ‐の‐しごととうりょう〔‐しごとタウリヤウ〕【熱の仕事当量】
ねつのしごととうりょう 熱の仕事当量 mechanical equivalent of heat
熱の仕事当量
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/01/31 19:36 UTC 版)
熱力学における熱の仕事当量とは、1 calの熱量に相当する仕事の量である。
概要
一般に記号 J で表され、単位は J/cal である。現在、J = 4.1855 J/cal と定められている[1]。
仕事 W と熱量 Q の間には、
熱の仕事当量を最初に発表したのはユリウス・ロベルト・フォン・マイヤーである。マイヤーは、1842年に出された論文「生命なき自然界における力についての考察」において、「大気の一定圧力下での[熱]容量と一定体積下での[熱]容量との比=1.421だとすると、約365メートルの高さからのおもりの降下には、[そのおもりと]同じ重量の水を摂氏零度から1度まで温めることが相当する[3]」と記した。この値は、J = 3.58 J/cal に相当する。この論文では詳細は書かれなかったが、1845年の論文で算出方法を明らかにした。
気体を定圧で温度上昇させたときと、定積で温度上昇させたときでは、同じ温度を上昇させても、定圧の方が多くの熱を必要とする。これは、体積を増やすときに、気体が外部に対して仕事をしなければならないからである。すなわち、定圧膨張と定積膨張の熱量の差が、仕事となる[4]。
温度を ΔT だけ上昇させたときの熱量の差 Q は、
ジェームズ・プレスコット・ジュールは、1843年にはじめて熱の仕事当量を実験により測定した。その測定は、おもりによる重力で電磁石のコイルを回転させ、その結果として発生する誘導電流の発熱を調べるというものであった。この実験により、ジュールは「1ポンドの水の温度を華氏目盛りで1度だけ上昇させることのできる熱量は、838ポンド[のおもり]を鉛直に1フィートの高さまで持ち上げることのできる機械的力に等しいし、それだけの力に転換されうるだろう[7]」との結論を得た。この数値は、J = 4.50 J/cal に相当する(以下、単位はすべて現在の J/cal に換算して記載する)。
ジュールはこの1ヵ月後に別の測定を行い、J = 4.14 J/cal の値を得た。そして、最初に得た値とこの値とを比べて、「機械的力が消費される時にはいつでもそれに厳密に等しい量の熱が得られる[8]」と結論を出し、熱が仕事へ転換できると判断した。ジュールは、両者の値がほぼ等しいと判断したのである[9]。
ジュールは1844年、空気を水中で圧縮・膨張させ、そのときの水の温度変化から熱の仕事当量を求めた(論文としての発表は1845年)。特に、空気を膨張させたときは温度が下がるので、これは今までの、仕事→熱という変化ではなく、熱→仕事という過程ではじめて測定した値だった。ジュールはこの実験で、J = 4.29 J/cal の値を導いている[10]。
ジュールによる熱の仕事当量の実験で最も有名なものは、羽根車による実験である[11]が、これは1845年に初めて行われた。水中(または他の液体中)で羽根車を回し、その運動で生まれる熱を測定するという仕組みである。羽根車の回転にはおもりを使用し、おもりの重さと、回転中におもりが下がった長さから仕事量を求める。
この実験は1845年から繰り返し行われ、1848年にウィリアム・トムソンの目にとまったことで一躍注目を浴びた。1849年に行った実験(論文発表は1850年)では、J = 4.15 J/cal を得た。これは30年近く、疑問の余地もない J の標準値であった[12]。
ジュールは1862年、電流の発熱の測定から、J = 4.212 J/cal の結果を得た。しかしこの値は、以前にジュール自身が出した値とずれがあったため、ジュールは英国科学振興協会から再実験の要望を受けた。ジュールはこれを受け、1878年に再度羽根車による実験を行い、J = 4.1587 J/cal の値を出した[13]。これはジュールが行った最後の実験であった。
熱の仕事当量は19世紀中ごろに、マイヤー、ジュール以外の科学者によっても測定が行われている[14]。
熱の仕事当量はマイヤーとジュールがそれぞれ独立に導き出した。ジュールの研究は、正当に評価されるのに数年を要したが、マイヤーの研究が認められるのにはさらに長い年月がかかった。
マイヤーの功績を見出したのは、ジョン・ティンダルであった。ティンダルは1862年、イギリスの王立研究所での講演で、仕事当量の算出を最初に行ったのはマイヤーであると主張し[15]、論文としても発表した。
これに対しジュールは、熱の仕事当量をはじめとする熱力学的理論は、17世紀のジョン・ロックから、ランフォード、デーヴィー、セガン、そしてマイヤーへと連なる流れの中で進められてきたが、マイヤーの理論は仮説をもとに構成されており、その仮説を実験的に確かめたのは自分であると反論した[16](実はランフォードの実験から仕事当量を計算したのはジュールである。これにはランフォードの功績を高めることで相対的にマイヤーの功績を下げる目的もあったと推定されている[17])。
この論争はその後、雑誌「フィロソフィカル・マガジン (Philosophical Magazine)誌上で、主にティンダルと、ピーター・テイトやトムソンとの間で繰り広げられた[16]。現在ではティンダルの主張が受け入れられ、熱の仕事当量を最初に求めたのはマイヤーとされており、実験的に確かめたジュールと共に、その功績が認められている。
ジュール以後も、熱の仕事当量の測定は行われた。ローランドは、ジュールの羽根車の装置を改良し、色々な温度でより精密な測定を行った。その結果、水の比熱が温度によって変わることを明らかにした[18]。
20世紀に入ってからも、イェーガーらは電気的なエネルギーを熱エネルギーに変えることによって、また、1927年にはラビーらが機械的エネルギーを熱エネルギーに変えることによって、それぞれ仕事当量を測定した[19][20]。こうした長年にわたる数々の測定結果から、現在の J の値が決定された。
現在では、熱の仕事当量を求めること自体が研究の対象になることはないが、高等学校や大学での実験教材として行われることはある[21][22][23]。歴史的に見ると、力学的な仕事と熱量との変換を調べるのが本筋であるが、それは実験的に難しいため、電気的なエネルギーを熱に変換することで仕事当量を求めることが多い[23]。
具体的には、水の入った容器に電熱線と温度計を入れ、容器を熱伝導率の悪い物質で覆う。そして電流を流し、そのときの水の温度上昇から熱の仕事当量を求める[23]。
水の質量を X、容器の熱容量を Y、温度上昇を ΔT とすると、発生した熱量は 仕事当量算出の一覧
年
人物
J値[J/cal]
測定方法
備考
1798年
ランフォード
5.57
大砲の中ぐり
ジュールによる計算値
1824~1832年
カルノー
3.62
不明(ガスの Cp, Cv と R ?)
未発表
1842年
マイヤー
3.58
ガスの Cp, Cv と R
1843年
ジュール
4.50
電磁石の誘導電流
1843年
ジュール
4.15
細管からの水の圧出
1843年
コールディング
3.63
固体の摩擦
1845年
ホルツマン
3.67
ガスの Cp, Cv と R
1845年
ジュール
4.29
空気の圧縮・膨張による温度変化
1845年
ジュール
4.78
羽根車による水の攪拌
1847年
ジュール
4.21
羽根車による液体の攪拌
1847年
セガン
4.40
蒸気の膨張による冷却
1849年
ジュール
4.15
羽根車による液体の攪拌
1855年
イルン
4.22
蒸気機関の効率
1857年
キンテイス・イチリウス
3.92
ジュール熱
1859年
ボッシャ
4.13
電池起電力
1862年
イルン
4.17
衝突による加熱
仕事当量算出の先取権
ジュール以後の測定
現在の測定方法の例
「熱の仕事当量」の例文・使い方・用例・文例
- 熱の仕事当量のページへのリンク