質量とエネルギーの等価性とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 質量とエネルギーの等価性の意味・解説 

質量とエネルギーの等価性

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/04/06 17:09 UTC 版)

M87* ブラックホール近傍の質量が、5,000光年にわたる非常に高エネルギーな天体物理学的ジェットに変換される。

物理学において、質量とエネルギーの等価性(しつりょうとエネルギーのとうかせい)は、静止座標系における質量とエネルギーの関係であり、2つの値の違いは定数と測定単位のみである[1][2]。この原理は、物理学者アルベルト・アインシュタインの有名な公式によって記述されている。E = mc2[3]

この式は、粒子の静止座標におけるエネルギーEを、質量(m)と光速の2乗(c2)の積として定義している。光速は日常的な単位では大きな数字(約 300 000 km/s または 186 000 mi/s)なので、この式は、系が静止しているときに測定される少量の「静止質光子のような質量のない粒子は不変質量をゼロとするが、質量のない自由粒子は運動量とエネルギーの両方を持つ。

エネルギーと質量は、などの放射エネルギー熱エネルギーとして周囲に放出されることがある。この原理は、原子核物理学素粒子物理学など、多くの物理学の分野で基本となっている。

質量とエネルギーの等価性は、フランスの博学者アンリ・ポアンカレ(1854-1912)が記述したパラドックスとして、特殊相対性理論から発生したものである[4]。アインシュタインは、質量とエネルギーの等価性を一般原理として、また空間と時間の対称性の帰結として初めて提唱した。この原理は、1905年11月21日に発表されたアインシュタインの奇跡の年の論文「物体の慣性はそのエネルギー含有量に依存するか」で初めて登場した[5]。この式と運動量との関係は、エネルギー-運動量の関係として、後に他の物理学者によって発展した。

内容

特殊相対性理論は、「物理法則は、すべての慣性系で同一である」という特殊相対性原理と、「真空中の光の速度は、すべての慣性系で等しい」という光速度一定の原理を満たすことを出発点として構築され、結果として、空間3次元時間1次元を合わせて4次元時空として捉える力学である。運動量ベクトルは、第0成分にエネルギー成分を持つ4元運動量 pμ(または p)として扱われ、運動方程式は

外部リンク




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  質量とエネルギーの等価性のページへのリンク

辞書ショートカット

カテゴリ一覧

すべての辞書の索引



Weblioのサービス

「質量とエネルギーの等価性」の関連用語




4
56% |||||







質量とエネルギーの等価性のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



質量とエネルギーの等価性のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの質量とエネルギーの等価性 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS