アインシュタイン係数とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > アインシュタイン係数の意味・解説 

アインシュタイン係数

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/04/23 07:52 UTC 版)

連続スペクトルと比較した輝線と吸収線

アインシュタイン係数(アインシュタインけいすう、: Einstein coefficients)は、原子もしくは分子による光の吸収および放射の確率を評価する数学量[1]A係数は光の自然放出の確率と関連し、B係数は光の吸収および誘導放出に関連する値である。

スペクトル線

物理学において、スペクトル線は2つの視点から考えることができる。

原子または分子が原子の特定の離散エネルギー準位E2から低いエネルギー準位E1に遷移し、特定のエネルギーと波長の光子を放出するときに輝線が形成される。多くのそのような光子によるスペクトルは、その光子に関連する波長において輝線のスパイクを示す。

原子または分子が低いエネルギー準位E1から高い離散エネルギーE2に遷移すると、吸収線が形成され、この過程で光子が吸収される。これらの吸収された光子は背景連続放射(電磁放射の全スペクトル)に由来し、スペクトルは吸収された光子に関連する波長における連続放射の降下を示す。

2つの状態は電子が原子または分子に結合している束縛状態でなければならないため、この遷移は、電子が原子から完全に連続状態に放出され(束縛自由("bound–free")遷移)、イオン化された原子を残し連続放射を生成する遷移に対して、束縛間("bound–bound")遷移と呼ばれることもある。

エネルギー準位差E2E1に等しいエネルギーを持つ光子はこの過程で放出または吸収される。スペクトル線が生じる周波数νは、ボーアの周波数条件英語版E2E1 = hプランク定数)により光子エネルギーと関連する[2][3][4][5][6][7]

放出係数と吸収係数

原子スペクトル線は、気体の放出および吸収の現象を指し、

原子の自然放出の模式図

自然放出は、電子が「自然に」(つまり、外部からの影響なしに)、高いエネルギー準位から低いエネルギー準位に減衰する過程である。この過程はアインシュタイン係数A21 (s−1)で書かれる。A21はエネルギー

原子の誘導放出の模式図

誘導放出は、遷移の周波数(もしくはその近く)の電磁放射があることにより、電子が高いエネルギー準位から低いエネルギー準位に移るよう誘導される過程である。熱力学観点から見ると、この過程は負の吸収と見なす必要がある。この過程はアインシュタイン係数

原子の吸収の模式図

吸収は、光子が原子に吸収され、電子が低いエネルギー準位から高いエネルギー準位に移る過程である。この過程はアインシュタイン係数 (J−1 m3 s−2)により書かれる。は、エネルギーの状態1の電子がエネルギーE2E1 = の光子を吸収しエネルギーの状態2に移る放射場の単位スペクトルエネルギー密度あたり単位時間あたりの確率を与える。吸収による単位時間あたりの状態1の原子の数密度の変化は

である。

詳細釣り合い

アインシュタイン係数は各原子と関連する時間あたりの決まった確率であり、原子の含まれる気体の状態にはよらない。したがって例えば熱力学的平衡における係数の間で導出することのできる関係は全て普遍的に有効である。

熱力学的平衡では、全ての過程による損失と利得により釣り合いがとられ、励起された原子数の正味の変化がゼロになる単純なバランスがとられる。束縛間遷移に関しては、詳細釣り合いも起こる。これは、遷移の確率が他の励起原子の有無により影響を受けないためである。詳細釣り合い(平衡状態でのみ有効)には、上記の3つの過程による準位1の原子数の時間変化が0であることが必要である。

詳細釣り合いに加え、温度Tにおいて、マクスウェル=ボルツマン分布でいわれる原子の平衡エネルギー分布と、プランクの黒体放射の法則でいわれる光子の平衡分布の知識を用いて、アインシュタイン係数間の普遍的な関係を導出することができる。

ボルツマン分布より、励起された原子種の数iが得られる。

ここでnは励起・非励起の原子種の総数密度、kボルツマン定数T温度は状態iの縮退(多重度とも)、Z分配関数である。温度Tにおける黒体放射のプランクの法則より、周波数νのスペクトルエネルギー密度について

ここで[21]

ここで光速プランク定数

これらの式を詳細釣り合いの方程式に代入し、E2E1 = であることを思い出すと、

整理すると

上式は任意の温度で成立する必要がある。よって

かつ

したがって、3つのアインシュタイン係数は次のように相互関連する。

かつ

この関係式を元の方程式に代入すると、プランクの法則に関係するの関係を導くこともできる。

振動子強度

振動子強度は、吸収断面積と次の関係により定義される[15]

ここでは電子電荷、は電子質量、はそれぞれ周波数と角周波数の正規化した分布関数である。 これにより3つのアインシュタイン係数全てを特定の原子スペクトル線と関連した1つの振動子強度の点から表現することができる。

関連項目

脚注

  1. ^ Hilborn, Robert C. (1982). “Einstein coefficients, cross sections, f values, dipole moments, and all that”. American Journal of Physics 50 (11): 982. arXiv:physics/0202029. Bibcode1982AmJPh..50..982H. doi:10.1119/1.12937. ISSN 0002-9505. 
  2. ^ Bohr 1913.
  3. ^ a b Einstein 1916.
  4. ^ Sommerfeld 1923, p. 43.
  5. ^ Heisenberg 1925, p. 108.
  6. ^ Brillouin 1970, p. 31.
  7. ^ Jammer 1989, pp. 113, 115.
  8. ^ Weinstein, M. A. (1960). “On the validity of Kirchhoff's law for a freely radiating body”. American Journal of Physics 28: 123–25. Bibcode1960AmJPh..28..123W. doi:10.1119/1.1935075. 
  9. ^ Burkhard, D. G.; Lochhead, J. V. S.; Penchina, C. M. (1972). “On the validity of Kirchhoff's law in a nonequilibrium environment”. American Journal of Physics 40: 1794–1798. Bibcode1972AmJPh..40.1794B. doi:10.1119/1.1987065. 
  10. ^ Baltes, H. P. (1976). On the validity of Kirchhoff's law of heat radiation for a body in a nonequilibrium environment, Chapter 1, pages 1–25 of Progress in Optics XIII, edited by E. Wolf, North-Holland, ISSN 0079-6638.
  11. ^ Milne, E. A. (1928). The effect of collisions on monochromatic radiative equilibrium, Monthly Notices of the Royal Astronomical Society, 88: 493–502.
  12. ^ Chandrasekhar, S. (1950), p. 7.
  13. ^ a b Mihalas, D., Weibel-Mihalas, B. (1984), pp. 329–330.
  14. ^ Loudon, R. (2000), Section 1.5, pp. 16–19.
  15. ^ a b Hilborn, R. C. (2002). Einstein coefficients, cross sections, f values, dipole moments, and all that.
  16. ^ Herzberg, G. (1950).
  17. ^ Yariv, A. (1967/1989), pp. 171–173.
  18. ^ Chandrasekhar, S. (1950), p. 354.
  19. ^ Goody, R. M., Yung, Y. L. (1989), pp. 33–35.
  20. ^ Loudon, R. (1973/2000), pp. 16–19.
  21. ^ Hubeny, Ivan; Mihalas, Dimitri (2015). Theory of stellar atmospheres : an introduction to astrophysical non-equilibrium quantitative spectroscopic analysis. Princeton University Press. pp. 116-118. ISBN 9780691163291 

引用文献

他の文献

外部リンク




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「アインシュタイン係数」の関連用語

アインシュタイン係数のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



アインシュタイン係数のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのアインシュタイン係数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS