ゆうどう‐ほうしゅつ〔イウダウハウシユツ〕【誘導放出】
誘導放出
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2017/07/11 02:00 UTC 版)
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(2015年7月) |
誘導放出(ゆうどうほうしゅつ、英: stimulated emission)とは、励起状態の電子(あるいは分子)が、外部から加えた電磁波(光子)によってより低いエネルギー準位にうつり、その分のエネルギーを電磁波として放出する現象である。このとき放出される光子は、外部から入射した光子と同じ位相、周波数、偏光を持ち、同じ方向に進む。 誘導放出を利用することで、光を位相や波長を揃えて(コヒーレントに)増幅することができ、レーザーの発振などに応用されている。
誘導放出・自然放出・吸光
誘導放出が起こるには外界の電磁場との相互作用が必要となる点で、自然放出とは区別される。
また、よく似た現象として吸光現象があるが、こちらは誘導放出の逆過程で、吸収された光子のエネルギーは、電子を低いエネルギー準位からより高いエネルギー準位へ励起するのに使われる点で異なる。熱平衡状態にある媒質では、低いエネルギー準位にいる電子が高いエネルギー準位にいる電子より数多く存在するために、誘導放出より吸光のほうが起こりやすい。誘導放出を吸光過程より優位に起こすためには、高いエネルギー準位にいる電子を低いエネルギー準位にいる電子より多く分布させる(反転分布)必要があり、そのときに限り誘導放出を利用して光を増幅させることが可能となる。そのような媒質をレーザー媒質などと呼ぶ。
誘導放出現象は、アルベルト・アインシュタインによって、量子力学の枠組みの中から理論的に発見された。量子力学において誘導放出は光子のやりとり、つまり量子化された電磁場によって記述される。
応用
たとえば半導体レーザーなどの場合、ナノメートル単位の大きさの量子井戸にエネルギー準位の揃ったキャリアを集中的に注入することで反転分布を形成していて、さらに効率よく発振させる工夫として、光共振器で放出光をフィードバックすることなどが施されている。
誘導放出は、発光遷移の確率を高めることで発光ダイオードなどの発光効率の向上にも応用できる。このような誘導放出による高効率発光はスーパールミネセンスなどと呼ばれる。
原子(または分子)における誘導放出現象は、マイクロ波の増幅や、発振器に用いられる。原子周波数標準に用いられる水素メーザーなどが代表的な応用例である。
関連項目
- アインシュタイン係数
誘導放出
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/06/06 14:11 UTC 版)
「アインシュタイン係数」の記事における「誘導放出」の解説
詳細は「誘導放出」を参照 誘導放出は、遷移の周波数(もしくはその近く)の電磁放射があることにより、電子が高いエネルギー準位から低いエネルギー準位に移るよう誘導される過程である。熱力学観点から見ると、この過程は負の吸収と見なす必要がある。この過程はアインシュタイン係数 B 21 {\displaystyle B_{21}} (J−1 m3 s−2)により書かれる。 B 21 {\displaystyle B_{21}} はエネルギー E 2 {\displaystyle E_{2}} の状態2の電子がエネルギー E 1 {\displaystyle E_{1}} の状態1に減衰しE2 − E1 = hνのエネルギーの光子を放出する放射場の単位スペクトルエネルギー密度あたり単位時間あたりの確率を与える。誘導放出による単位時間当たりの状態1の原子の数密度の変化は ( d n 1 d t ) neg. absorb. = B 21 n 2 ρ ( ν ) , {\displaystyle \left({\frac {dn_{1}}{dt}}\right)_{\text{neg. absorb.}}=B_{21}n_{2}\rho (\nu ),} となる。ここで ρ ( ν ) {\displaystyle \rho (\nu )} は遷移の周波数における等方性放射場のスペクトルエネルギー密度(プランクの法則参照)である。 誘導放出は、レーザーの開発につながった基本的な過程の1つである。しかし、レーザー放射は等方性放射の現在のものとは大きくかけ離れている。
※この「誘導放出」の解説は、「アインシュタイン係数」の解説の一部です。
「誘導放出」を含む「アインシュタイン係数」の記事については、「アインシュタイン係数」の概要を参照ください。
「誘導放出」の例文・使い方・用例・文例
誘導放出と同じ種類の言葉
- 誘導放出のページへのリンク