技術の進歩による動向の変化
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/04 09:21 UTC 版)
「動力分散方式」の記事における「技術の進歩による動向の変化」の解説
電車の場合、近年ではVVVF制御など、急速に技術革新が進み、主電動機一台あたりの出力を大幅に向上させて、編成全体の電動車比率(MT比)を下げながらも従来の車両と同等もしくはそれ以上の出力を確保する手法が主流になっている(新幹線でも似たような手法で一部系列で付随車を連結しているものがある)。言わば動力集中方式的な要素も取り入れていると言える。 例えば、JR東日本209系電車以降の通勤・近郊形車両などのように、車体を大幅に軽量化した分主電動機の出力を下げて、その分を主電動機を過負荷運用させてカバーする手法もあるが、これは同社の極力保守にかけるコストや労力を減らして、老朽化した車両を速やかに大量に置き換える発想から来ている。しかし、電動車一両あたりに掛かる負荷が大きくなりがちであり、更に軽量車体であるがゆえに雨天時などの悪条件下で空転が多発する、また本来動力分散方式の長所の1つである(システム運用上の)フェイルセーフの効果が下がり、1ユニット(通常、2電動車)の故障で通常(ダイヤ通り)の走行が不可能になる、など、運用面で問題が生じるケースも相次いだ。そのため、JR東日本E233系電車においては、209系で下げられたMT比が再び旧来の国鉄205系電車と同等となっている。 他の対策として、電動車一両に積む主電動機数を減らし、その分で編成全体の電動車比率を上げることでカバーし、編成全体の重量バランスを平準化させる手法を取る車両も登場している。まず1960年に東急6000系電車 (初代)で試験的に導入されたが、構造が複雑であり保守が煩雑になりやすい1台車1電動機2軸駆動という意欲的設計が祟って続かず、本格量産車の東急7000系電車では動力車としてはオーソドックスな構成に戻った。後、単行運用を基本とする125系電車において先行的に導入され、JR西日本321系電車で本格的に採用された。従来の通常電動車は1両あたりの主電動機数が4台なのに対して、2台にしている場合は「0.5M方式」、3台の場合は「0.75M方式」などと呼ばれることが多い。 一方気動車では、小型で軽量な直接噴射式のディーゼルエンジンに過給機(ターボなど)およびインタークーラーを組み合わせることで、手軽に高出力が得られるようになり、同時に多段化など変速機の機能も進化したことで、加速や登坂性能が大幅に向上し、ディーゼル機関車牽引の列車に比して大幅な運転時分の短縮が可能となった。 電車と異なり、気動車はディーゼルエンジンの重量あたりの出力が小さい(概ね180 - 250 ps)ため通常1両あたり1 - 2エンジン搭載となっており、加えて日本では気動車そのものが閑散ローカル線向けの単行から4両程度の短編成用として発展した経緯から、電車のようにMT比を圧縮するといった方向にはなっていない。ただし、国鉄キハ181系気動車やJR西日本キサハ34形、JR北海道キハ141系気動車のように採用例は存在する。181系、141系については上述のとおり高出力エンジン(181系は500 ps、141系は450 ps)の台頭も関与している。
※この「技術の進歩による動向の変化」の解説は、「動力分散方式」の解説の一部です。
「技術の進歩による動向の変化」を含む「動力分散方式」の記事については、「動力分散方式」の概要を参照ください。
- 技術の進歩による動向の変化のページへのリンク