凍土・永久凍土
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/12/03 14:10 UTC 版)
凍土(永久凍土や季節的に凍結する土壌)は北半球の陸地のうちおよそ5400万km²を占めており(ジャンら 2003)、雪氷圏の構成要素の中で最も広い面積範囲をもつ。永久凍土(年中凍結した土壌)は年平均気温(MAAT)が-1か-2 ℃よりも低くなると生じやすく、-7 ℃よりも低くなると連続永久凍土が生じる。また、永久凍土の広さと厚さは、地面の含水量やその土壌の植生、冬の積雪の深さ、植生の季観に影響される。世界全体の永久凍土の面積範囲はまだ完全にわかっていないが、北半球の陸地のおよそ20%だろうとされている。永久凍土の厚さはシベリアやアラスカの北東部の北極沿岸部では600mを超えるが、限界領域に近づくにしたがって薄くなり、水平方向に不連続になってゆく。その限界領域は温暖化傾向により引き起こされる氷の融解からいち早く影響を受けることになる。現在存在している永久凍土の大部分は以前の今よりも寒い気候条件の下で形成されたもので、言い換えれば、それは過去の遺跡のようなものにすぎない。ところが、氷河が後退しあるいは凍結していない地面を持った陸地が新たに現れる現在の極気候の下でも永久凍土ができるかもしれない。ワッシュバーン(1973)が出した結論によると、大部分の連続永久凍土は上表面で現在の気候とのバランスがきちんと保たれており、下表面の変化は現在の気候と地熱流に依存している一方で、大部分の不連続永久凍土はおそらく不安定、すなわち「わずかな気候の変化や表面の変化が劇的な不釣り合いの状態を生み出しうるようなもろいつり合い状態」にあるということだ。 温暖化の下で、ますます深くなっている夏の活動層は水文学的地形学的な流束に重大な影響を与える。永久凍土の融解や後退はマッキンジー川上流やマニトバ州の南限界領域に沿う地域で報告されているが、そのような観察結果はきちんと計測され一般化されているわけではない。緯度における気温の平均勾配に基づくと、1 ℃の気温上昇に対する平衡条件の下では、永久凍土の南の境界が北に50~150 km だけずれることが予想されている。 永久凍土の存在する範囲のほんの一部分だけが実際に土や岩石に氷を含んでおり、それ以外(乾燥永久凍土と呼ばれる)は氷点下の気温では単なる土か岩石である。一般的に氷の容積は永久凍土の最上部で最も大きく、そこでは氷は空隙中にあったり岩石から分離された氷として存在したりする。永久凍土のボーリング孔の温度の測定は、気温の状態に関する正味の変化の指標として使うことができる。ゴールドとラッヘンブルック(1973)は、ここ75~100年の間にトンプソン岬やアラスカで2~4 ℃の温度上昇を推定する。これらの地域では、400mの厚さを持つ永久凍土の上部25%が深さに対する気温の平衡分布に関して不安定となっている(現在の平均表面温度は-5 ℃)。しかし海洋性気候の影響がこの推測に偏りを持たせていたかもしれない。プルドーベイでは類似のデータによりここ100年間で1.8 ℃の温度上昇が暗示されている(ラッヘンブルックら 1982)。積雪の深さや、自然に起こるあるいは人工的に発生する地表の植生の擾乱の変化によってさらに複雑な要素が導入されるであろう。 永久凍土が融解する速度の予測はオステルカンプ(1984)によって確証されており、それによると、3・4年で-0.4~0 ℃、その後さらに2.6 ℃の気温上昇を見込んだ場合、アラスカ内部の厚さ25mの不連続永久凍土が融解するのに2世紀あるいはそれ以下しかかからないということだ。気温の変化に対する永久凍土(の深さ)の応答反応は一般的には非常にゆっくりとした過程である(オステルカンプ 1984; コスター 1993)が、活動層の厚さは気温の変化に対して素早く反応するという事実について十分な証拠が存在している(ケインら 1991)。温暖化の場合であろうと寒冷化の場合であろうと、地球の気候の変化は季節的に凍結する地域と年中凍結している地域のどちらにおいても無霜期間中に多大な影響を及ぼすのだろう。
※この「凍土・永久凍土」の解説は、「雪氷圏」の解説の一部です。
「凍土・永久凍土」を含む「雪氷圏」の記事については、「雪氷圏」の概要を参照ください。
- 凍土・永久凍土のページへのリンク