O-GlcNAcとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > O-GlcNAcの意味・解説 

O-GlcNAc

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/02/27 14:20 UTC 版)

O-GlcNAcO-結合型GlcNAc、O-結合型 N-アセチルグルコサミン)は、細胞質タンパク質セリンスレオニン残基にみられる可逆的な翻訳後修飾である。この修飾は、セリンまたはスレオニン側鎖のヒドロキシル基N-アセチルグルコサミン(GlcNAc)の間のβ-グリコシド結合によって特徴づけられる。O-GlcNAcは、(i) 伸長してより複雑な多糖構造を形成することがない、(ii) 膜タンパク質や分泌タンパク質ではなく核や細胞質のタンパク質に主に存在する、(iii) 高度に動的な修飾であり、迅速なターンオーバーが生じる、という点で他のグリコシル化修飾とは異なっている。O-GlcNAc修飾は、後生動物の間で保存されている[1]


  1. ^ a b Zeidan, Quira; Hart, Gerald W. (2010-01-01). “The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways”. Journal of Cell Science 123 (1): 13–22. doi:10.1242/jcs.053678. ISSN 0021-9533. PMC 2794709. PMID 20016062. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2794709/. 
  2. ^ Dias, Wagner B.; Cheung, Win D.; Hart, Gerald W. (2012-06-01). “O-GlcNAcylation of Kinases”. Biochemical and Biophysical Research Communications 422 (2): 224–228. doi:10.1016/j.bbrc.2012.04.124. ISSN 0006-291X. PMC 3387735. PMID 22564745. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3387735/. 
  3. ^ Haltiwanger, RS; Holt, GD; Hart, GW (1990-02-15). “Enzymatic Addition of O-GlcNAc to Nuclear and Cytoplasmic Proteins. Identification of a Uridine diphospho-N-acetylglucosamine:peptide beta-N-acetylglucosaminyltransferase” (英語). Journal of Biological Chemistry 265 (5): 2563–8. doi:10.1016/S0021-9258(19)39838-2. PMID 2137449. 
  4. ^ “The human O-GlcNAcome database and meta-analysis”. Scientific Data 8 (1): 25. (January 2021). Bibcode2021NatSD...8...25W. doi:10.1038/s41597-021-00810-4. PMC 7820439. PMID 33479245. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820439/. 
  5. ^ Ma, Junfeng; Hart, Gerald W (2014-03-05). “O-GlcNAc profiling: from proteins to proteomes”. Clinical Proteomics 11 (1): 8. doi:10.1186/1559-0275-11-8. ISSN 1542-6416. PMC 4015695. PMID 24593906. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015695/. 
  6. ^ King, Dustin T.; Serrano-Negrón, Jesús E.; Zhu, Yanping; Moore, Christopher L.; Shoulders, Matthew D.; Foster, Leonard J.; Vocadlo, David J. (2022-03-09). “Thermal Proteome Profiling Reveals the O-GlcNAc-Dependent Meltome”. Journal of the American Chemical Society 144 (9): 3833–3842. doi:10.1021/jacs.1c10621. ISSN 1520-5126. PMC 8969899. PMID 35230102. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8969899/. 
  7. ^ Kelly, WG; Dahmus, ME; Hart, GW (1993-05-15). “RNA Polymerase II Is a Glycoprotein. Modification of the COOH-terminal Domain by O-GlcNAc” (英語). Journal of Biological Chemistry 268 (14): 10416–24. doi:10.1016/S0021-9258(18)82216-5. PMID 8486697. 
  8. ^ a b c d e f Sakabe, K; Wang, Z; Hart, GW (2010-11-16). “Beta-N-acetylglucosamine (O-GlcNAc) Is Part of the Histone Code” (英語). Proceedings of the National Academy of Sciences of the United States of America 107 (46): 19915–20. Bibcode2010PNAS..10719915S. doi:10.1073/pnas.1009023107. PMC 2993388. PMID 21045127. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2993388/. 
  9. ^ Levine, Z; Walker, S (2016-06-02). “The Biochemistry of O-GlcNAc Transferase: Which Functions Make It Essential in Mammalian Cells?” (英語). Annual Review of Biochemistry 85: 631–57. doi:10.1146/annurev-biochem-060713-035344. PMID 27294441. 
  10. ^ Ong, Qunxiang; Han, Weiping; Yang, Xiaoyong (2018-10-16). “O-GlcNAc as an Integrator of Signaling Pathways”. Frontiers in Endocrinology 9: 599. doi:10.3389/fendo.2018.00599. ISSN 1664-2392. PMC 6234912. PMID 30464755. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234912/. 
  11. ^ Hart, Gerald W.; Slawson, Chad; Ramirez-Correa, Genaro; Lagerlof, Olof (2011-06-07). “Cross Talk Between O-GlcNAcylation and Phosphorylation: Roles in Signaling, Transcription, and Chronic Disease”. Annual Review of Biochemistry 80: 825–858. doi:10.1146/annurev-biochem-060608-102511. ISSN 0066-4154. PMC 3294376. PMID 21391816. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3294376/. 
  12. ^ Torres, CR; Hart, GW (1984-03-10). “Topography and Polypeptide Distribution of Terminal N-acetylglucosamine Residues on the Surfaces of Intact Lymphocytes. Evidence for O-linked GlcNAc” (英語). Journal of Biological Chemistry 259 (5): 3308–17. doi:10.1016/S0021-9258(17)43295-9. PMID 6421821. 
  13. ^ a b Shen, David L.; Gloster, Tracey M.; Yuzwa, Scott A.; Vocadlo, David J. (2012-05-04). “Insights into O-Linked N-Acetylglucosamine (O-GlcNAc) Processing and Dynamics through Kinetic Analysis of O-GlcNAc Transferase and O-GlcNAcase Activity on Protein Substrates”. Journal of Biological Chemistry 287 (19): 15395–15408. doi:10.1074/jbc.M111.310664. ISSN 0021-9258. PMC 3346082. PMID 22311971. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3346082/. 
  14. ^ a b Zhu, Y; Liu, TW; Cecioni, S; Eskandari, R; Zandberg, WF; Vocadlo, DJ (May 2015). “O-GlcNAc Occurs Cotranslationally to Stabilize Nascent Polypeptide Chains” (英語). Nature Chemical Biology 11 (5): 319–25. doi:10.1038/nchembio.1774. PMID 25774941. 
  15. ^ a b c Lazarus, MB; Nam, Y; Jiang, J; Sliz, P; Walker, S (2011-01-27). “Structure of Human O-GlcNAc Transferase and Its Complex With a Peptide Substrate” (英語). Nature 469 (7331): 564–7. Bibcode2011Natur.469..564L. doi:10.1038/nature09638. PMC 3064491. PMID 21240259. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3064491/. 
  16. ^ Macauley, MS; Whitworth, GE; Debowski, AW; Chin, D; Vocadlo, DJ (2005-07-08). “O-GlcNAcase Uses Substrate-Assisted Catalysis: Kinetic Analysis and Development of Highly Selective Mechanism-Inspired Inhibitors” (英語). Journal of Biological Chemistry 280 (27): 25313–22. doi:10.1074/jbc.M413819200. PMID 15795231. 
  17. ^ Roth, Christian; Chan, Sherry; Offen, Wendy A; Hemsworth, Glyn R; Willems, Lianne I; King, Dustin T; Varghese, Vimal; Britton, Robert et al. (June 2017). “Structural and functional insight into human O-GlcNAcase”. Nature Chemical Biology 13 (6): 610–612. doi:10.1038/nchembio.2358. ISSN 1552-4450. PMC 5438047. PMID 28346405. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438047/. 
  18. ^ Elsen, NL; Patel, SB; Ford, RE; Hall, DL; Hess, F; Kandula, H; Kornienko, M; Reid, J et al. (June 2017). “Insights Into Activity and Inhibition From the Crystal Structure of Human O-GlcNAcase” (英語). Nature Chemical Biology 13 (6): 613–615. doi:10.1038/nchembio.2357. PMID 28346407. 
  19. ^ Joiner, CM; Levine, ZG; Aonbangkhen, C; Woo, CM; Walker, S (2019-08-21). “Aspartate Residues Far From the Active Site Drive O-GlcNAc Transferase Substrate Selection” (英語). Journal of the American Chemical Society 141 (33): 12974–12978. doi:10.1021/jacs.9b06061. PMC 6849375. PMID 31373491. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849375/. 
  20. ^ Levine, ZG; Fan, C; Melicher, MS; Orman, M; Benjamin, T; Walker, S (2018-03-14). “O-GlcNAc Transferase Recognizes Protein Substrates Using an Asparagine Ladder in the Tetratricopeptide Repeat (TPR) Superhelix” (英語). Journal of the American Chemical Society 140 (10): 3510–3513. doi:10.1021/jacs.7b13546. PMC 5937710. PMID 29485866. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5937710/. 
  21. ^ S, Pathak; J, Alonso; M, Schimpl; K, Rafie; De, Blair; Vs, Borodkin; O, Albarbarawi; Dmf, van Aalten (Sep 2015). “The Active Site of O-GlcNAc Transferase Imposes Constraints on Substrate Sequence” (英語). Nature Structural & Molecular Biology 22 (9): 744–750. doi:10.1038/nsmb.3063. PMC 4979681. PMID 26237509. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4979681/. 
  22. ^ Cheung, WD; Sakabe, K; Housley, MP; Dias, WB; Hart, GW (2008-12-05). “O-linked beta-N-acetylglucosaminyltransferase Substrate Specificity Is Regulated by Myosin Phosphatase Targeting and Other Interacting Proteins” (英語). Journal of Biological Chemistry 283 (49): 33935–41. doi:10.1074/jbc.M806199200. PMC 2590692. PMID 18840611. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590692/. 
  23. ^ Zachara, Natasha E.; Vosseller, Keith; Hart, Gerald W. (November 2011). “Detection and Analysis of Proteins Modified by O-Linked N-Acetylglucosamine”. Current Protocols in Protein Science CHAPTER: 12.8.1–12.8.33. doi:10.1002/0471140864.ps1208s66. ISSN 1934-3655. PMC 3349994. PMID 22045558. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3349994/. 
  24. ^ Snow, C. M.; Senior, A.; Gerace, L. (1987-05-01). “Monoclonal antibodies identify a group of nuclear pore complex glycoproteins”. The Journal of Cell Biology 104 (5): 1143–1156. doi:10.1083/jcb.104.5.1143. ISSN 0021-9525. PMC 2114474. PMID 2437126. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114474/. 
  25. ^ Comer, FI; Vosseller, K; Wells, L; Accavitti, MA; Hart, GW (2001-06-15). “Characterization of a Mouse Monoclonal Antibody Specific for O-linked N-acetylglucosamine” (英語). Analytical Biochemistry 293 (2): 169–77. doi:10.1006/abio.2001.5132. PMID 11399029. 
  26. ^ Teo, CF; Ingale, S; Wolfert, MA; Elsayed, GA; Nöt, LG; Chatham, JC; Wells, L; Boons, GJ (May 2010). “Glycopeptide-specific Monoclonal Antibodies Suggest New Roles for O-GlcNAc” (英語). Nature Chemical Biology 6 (5): 338–43. doi:10.1038/nchembio.338. PMC 2857662. PMID 20305658. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857662/. 
  27. ^ a b DJ, Vocadlo; HC, Hang; Ej, Kim; Ja, Hanover; Cr, Bertozzi (2003-08-05). “A Chemical Approach for Identifying O-GlcNAc-modified Proteins in Cells” (英語). Proceedings of the National Academy of Sciences of the United States of America 100 (16): 9116–21. Bibcode2003PNAS..100.9116V. doi:10.1073/pnas.1632821100. PMC 171382. PMID 12874386. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC171382/. 
  28. ^ a b c Clark, PM; Dweck, JF; Mason, DE; Hart, CR; Buck, SB; Peters, EC; Agnew, BJ; Hsieh-Wilson, LC (2008-09-03). “Direct In-Gel Fluorescence Detection and Cellular Imaging of O-GlcNAc-modified Proteins” (英語). Journal of the American Chemical Society 130 (35): 11576–7. doi:10.1021/ja8030467. PMC 2649877. PMID 18683930. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649877/. 
  29. ^ a b c Rexach, JE; Rogers, CJ; Yu, SH; Tao, J; Sun, YE; Hsieh-Wilson, LC (September 2010). “Quantification of O-glycosylation Stoichiometry and Dynamics Using Resolvable Mass Tags” (英語). Nature Chemical Biology 6 (9): 645–51. doi:10.1038/nchembio.412. PMC 2924450. PMID 20657584. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2924450/. 
  30. ^ a b Walter, LA; Batt, AR; Darabedian, N; Zaro, BW; Pratt, MR (2018-09-17). “Azide- And Alkyne-Bearing Metabolic Chemical Reporters of Glycosylation Show Structure-Dependent Feedback Inhibition of the Hexosamine Biosynthetic Pathway” (英語). ChemBioChem 19 (18): 1918–1921. doi:10.1002/cbic.201800280. PMC 6261355. PMID 29979493. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6261355/. 
  31. ^ Boyce, M; Carrico, IS; Ganguli, AS; Yu, SH; Hangauer, MJ; Hubbard, SC; Kohler, JJ; Bertozzi, CR (2011-02-22). “Metabolic Cross-Talk Allows Labeling of O-linked beta-N-acetylglucosamine-modified Proteins via the N-acetylgalactosamine Salvage Pathway” (英語). Proceedings of the National Academy of Sciences of the United States of America 108 (8): 3141–6. Bibcode2011PNAS..108.3141B. doi:10.1073/pnas.1010045108. PMC 3044403. PMID 21300897. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3044403/. 
  32. ^ Tan, HY; Eskandari, R; Shen, D; Zhu, Y; Liu, TW; Willems, LI; Alteen, MG; Madden, Z et al. (2018-11-14). “Direct One-Step Fluorescent Labeling of O-GlcNAc-Modified Proteins in Live Cells Using Metabolic Intermediates” (英語). Journal of the American Chemical Society 140 (45): 15300–15308. doi:10.1021/jacs.8b08260. PMID 30296064. http://eprints.whiterose.ac.uk/138310/1/Tan_JACS_2018_accepted_manuscript.docx. 
  33. ^ a b Yu, SH; Boyce, M; Wands, AM; Bond, MR; Bertozzi, CR; Kohler, JJ (2012-03-27). “Metabolic Labeling Enables Selective Photocrosslinking of O-GlcNAc-modified Proteins to Their Binding Partners” (英語). Proceedings of the National Academy of Sciences of the United States of America 109 (13): 4834–9. Bibcode2012PNAS..109.4834Y. doi:10.1073/pnas.1114356109. PMC 3323966. PMID 22411826. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3323966/. 
  34. ^ Rodriguez, AC; Kohler, JJ (2014-08-01). “Recognition of Diazirine-Modified O-GlcNAc by Human O-GlcNAcase” (英語). MedChemComm 5 (8): 1227–1234. doi:10.1039/C4MD00164H. PMC 4109824. PMID 25068034. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109824/. 
  35. ^ Zaro, BW; Yang, YY; Hang, HC; Pratt, MR (2011-05-17). “Chemical Reporters for Fluorescent Detection and Identification of O-GlcNAc-modified Proteins Reveal Glycosylation of the Ubiquitin Ligase NEDD4-1” (英語). Proceedings of the National Academy of Sciences of the United States of America 108 (20): 8146–51. Bibcode2011PNAS..108.8146Z. doi:10.1073/pnas.1102458108. PMC 3100932. PMID 21540332. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100932/. 
  36. ^ Zaro, Balyn W.; Chuh, Kelly N.; Pratt, Matthew R. (2014-09-19). “Chemical Reporter for Visualizing Metabolic Cross-Talk between Carbohydrate Metabolism and Protein Modification”. ACS Chemical Biology 9 (9): 1991–1996. doi:10.1021/cb5005564. ISSN 1554-8929. PMC 4168799. PMID 25062036. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4168799/. 
  37. ^ Qin, Wei; Qin, Ke; Fan, Xinqi; Peng, Linghang; Hong, Weiyao; Zhu, Yuntao; Lv, Pinou; Du, Yifei et al. (2018-02-12). “Artificial Cysteine S-Glycosylation Induced by Per-O-Acetylated Unnatural Monosaccharides during Metabolic Glycan Labeling” (英語). Angewandte Chemie International Edition 57 (7): 1817–1820. doi:10.1002/anie.201711710. https://onlinelibrary.wiley.com/doi/10.1002/anie.201711710. 
  38. ^ Qin, Ke; Zhang, Hao; Zhao, Zhenqi; Chen, Xing (2020-05-20). “Protein S-Glyco-Modification through an Elimination–Addition Mechanism” (英語). Journal of the American Chemical Society 142 (20): 9382–9388. doi:10.1021/jacs.0c02110. ISSN 0002-7863. https://pubs.acs.org/doi/10.1021/jacs.0c02110. 
  39. ^ a b Click-IT™ O-GlcNAc Enzymatic Labeling System”. www.thermofisher.com. 2020年5月30日閲覧。
  40. ^ Carrillo, LD; Krishnamoorthy, L; Mahal, LK (2006-11-22). “A Cellular FRET-based Sensor for beta-O-GlcNAc, a Dynamic Carbohydrate Modification Involved in Signaling” (英語). Journal of the American Chemical Society 128 (46): 14768–9. doi:10.1021/ja065835+. PMID 17105262. 
  41. ^ Carrillo, Luz D.; Froemming, Joshua A.; Mahal, Lara K. (2011-02-25). “Targeted in Vivo O-GlcNAc Sensors Reveal Discrete Compartment-specific Dynamics during Signal Transduction”. Journal of Biological Chemistry 286 (8): 6650–6658. doi:10.1074/jbc.M110.191627. ISSN 0021-9258. PMC 3057821. PMID 21138847. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057821/. 
  42. ^ Ma, Junfeng; Hart, Gerald W. (2017-02-02). “Analysis of Protein O-GlcNAcylation by Mass Spectrometry”. Current Protocols in Protein Science 87: 24.10.1–24.10.16. doi:10.1002/cpps.24. ISSN 1934-3655. PMC 5300742. PMID 28150883. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5300742/. 
  43. ^ Wells, L; Vosseller, K; Cole, RN; Cronshaw, JM; Matunis, MJ; Hart, GW (October 2002). “Mapping Sites of O-GlcNAc Modification Using Affinity Tags for Serine and Threonine Post-Translational Modifications” (英語). Molecular & Cellular Proteomics 1 (10): 791–804. doi:10.1074/mcp.m200048-mcp200. PMID 12438562. 
  44. ^ Zhao, Peng; Viner, Rosa; Teo, Chin Fen; Boons, Geert-Jan; Horn, David; Wells, Lance (2011-09-02). “Combining High-energy C-trap Dissociation and Electron Transfer Dissociation for Protein O-GlcNAc Modification Site Assignment”. Journal of Proteome Research 10 (9): 4088–4104. doi:10.1021/pr2002726. ISSN 1535-3893. PMC 3172619. PMID 21740066. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3172619/. 
  45. ^ Palaniappan, Krishnan K.; Pitcher, Austin A.; Smart, Brian P.; Spiciarich, David R.; Iavarone, Anthony T.; Bertozzi, Carolyn R. (2011-08-19). “Isotopic Signature Transfer and Mass Pattern Prediction (IsoStamp): An Enabling Technique for Chemically-Directed Proteomics”. ACS Chemical Biology 6 (8): 829–836. doi:10.1021/cb100338x. ISSN 1554-8929. PMC 3220624. PMID 21604797. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3220624/. 
  46. ^ Woo, CM; Iavarone, AT; Spiciarich, DR; Palaniappan, KK; Bertozzi, CR (June 2015). “Isotope-targeted Glycoproteomics (IsoTaG): A Mass-Independent Platform for Intact N- And O-glycopeptide Discovery and Analysis” (英語). Nature Methods 12 (6): 561–7. doi:10.1038/nmeth.3366. PMC 4599779. PMID 25894945. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4599779/. 
  47. ^ Woo, Christina M.; Felix, Alejandra; Byrd, William E.; Zuegel, Devon K.; Ishihara, Mayumi; Azadi, Parastoo; Iavarone, Anthony T.; Pitteri, Sharon J. et al. (2017-04-07). “Development of IsoTaG, a Chemical Glycoproteomics Technique for Profiling Intact N- and O-Glycopeptides from Whole Cell Proteomes”. Journal of Proteome Research 16 (4): 1706–1718. doi:10.1021/acs.jproteome.6b01053. ISSN 1535-3893. PMC 5507588. PMID 28244757. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5507588/. 
  48. ^ Woo, Christina M.; Felix, Alejandra; Zhang, Lichao; Elias, Joshua E.; Bertozzi, Carolyn R. (January 2017). “Isotope Targeted Glycoproteomics (IsoTaG) analysis of sialylated N- and O-glycopeptides on an Orbitrap Fusion Tribrid using azido and alkynyl sugars”. Analytical and Bioanalytical Chemistry 409 (2): 579–588. doi:10.1007/s00216-016-9934-9. ISSN 1618-2642. PMC 5342897. PMID 27695962. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342897/. 
  49. ^ a b Woo, CM; Lund, PJ; Huang, AC; Davis, MM; Bertozzi, CR; Pitteri, SJ (April 2018). “Mapping and Quantification of Over 2000 O-linked Glycopeptides in Activated Human T Cells With Isotope-Targeted Glycoproteomics (Isotag)” (英語). Molecular & Cellular Proteomics 17 (4): 764–775. doi:10.1074/mcp.RA117.000261. PMC 5880114. PMID 29351928. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5880114/. 
  50. ^ Khidekel, N; Ficarro, SB; Clark, PM; Bryan, MC; Swaney, DL; Rexach, JE; Sun, YE; Coon, JJ et al. (June 2007). “Probing the Dynamics of O-GlcNAc Glycosylation in the Brain Using Quantitative Proteomics” (英語). Nature Chemical Biology 3 (6): 339–48. doi:10.1038/nchembio881. PMID 17496889. https://authors.library.caltech.edu/56470/2/nchembio881-S1.pdf. 
  51. ^ Qin, K; Zhu, Y; Qin, W; Gao, J; Shao, X; Wang, YL; Zhou, W; Wang, C et al. (2018-08-17). “Quantitative Profiling of Protein O-GlcNAcylation Sites by an Isotope-Tagged Cleavable Linker” (英語). ACS Chemical Biology 13 (8): 1983–1989. doi:10.1021/acschembio.8b00414. PMID 30059200. 
  52. ^ Li, J; Li, Z; Duan, X; Qin, K; Dang, L; Sun, S; Cai, L; Hsieh-Wilson, LC et al. (2019-01-18). “An Isotope-Coded Photocleavable Probe for Quantitative Profiling of Protein O-GlcNAcylation” (英語). ACS Chemical Biology 14 (1): 4–10. doi:10.1021/acschembio.8b01052. PMID 30620550. https://authors.library.caltech.edu/92154/2/cb8b01052_si_001.pdf. 
  53. ^ Liu, Tai-Wei; Zandberg, Wesley F.; Gloster, Tracey M.; Deng, Lehua; Murray, Kelsey D.; Shan, Xiaoyang; Vocadlo, David J. (June 25, 2018). “Metabolic Inhibitors of O-GlcNAc Transferase That Act In Vivo Implicate Decreased O-GlcNAc Levels in Leptin-Mediated Nutrient Sensing”. Angewandte Chemie International Edition 57 (26): 7644–7648. doi:10.1002/anie.201803254. ISSN 1521-3773. PMC 6055616. PMID 29756380. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6055616/. 
  54. ^ Martin, Sara E. S.; Tan, Zhi-Wei; Itkonen, Harri M.; Duveau, Damien Y.; Paulo, Joao A.; Janetzko, John; Boutz, Paul L.; Törk, Lisa et al. (October 24, 2018). “Structure-Based Evolution of Low Nanomolar O-GlcNAc Transferase Inhibitors”. Journal of the American Chemical Society 140 (42): 13542–13545. doi:10.1021/jacs.8b07328. ISSN 1520-5126. PMC 6261342. PMID 30285435. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6261342/. 
  55. ^ Dorfmueller, Helge C.; Borodkin, Vladimir S.; Schimpl, Marianne; Shepherd, Sharon M.; Shpiro, Natalia A.; van Aalten, Daan M. F. (2006-12-27). “GlcNAcstatin: a picomolar, selective O-GlcNAcase inhibitor that modulates intracellular O-glcNAcylation levels”. Journal of the American Chemical Society 128 (51): 16484–16485. doi:10.1021/ja066743n. ISSN 0002-7863. PMC 7116141. PMID 17177381. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116141/. 
  56. ^ a b Yuzwa, SA; Macauley, MS; Heinonen, JE; Shan, X; Dennis, RJ; He, Y; Whitworth, GE; Stubbs, KA et al. (August 2008). “A Potent Mechanism-Inspired O-GlcNAcase Inhibitor That Blocks Phosphorylation of Tau in Vivo” (英語). Nature Chemical Biology 4 (8): 483–90. doi:10.1038/nchembio.96. PMID 18587388. 
  57. ^ Akella, Neha M.; Ciraku, Lorela; Reginato, Mauricio J. (2019-07-04). “Fueling the fire: emerging role of the hexosamine biosynthetic pathway in cancer”. BMC Biology 17 (1): 52. doi:10.1186/s12915-019-0671-3. ISSN 1741-7007. PMC 6610925. PMID 31272438. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6610925/. 
  58. ^ a b c d Tarrant, MK; Rho, HS; Xie, Z; Jiang, YL; Gross, C; Culhane, JC; Yan, G; Qian, J et al. (2012-01-22). “Regulation of CK2 by Phosphorylation and O-GlcNAcylation Revealed by Semisynthesis” (英語). Nature Chemical Biology 8 (3): 262–9. doi:10.1038/nchembio.771. PMC 3288285. PMID 22267120. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3288285/. 
  59. ^ a b c d Marotta, NP; Lin, YH; Lewis, YE; Ambroso, MR; Zaro, BW; Roth, MT; Arnold, DB; Langen, R et al. (Nov 2015). “O-GlcNAc Modification Blocks the Aggregation and Toxicity of the Protein α-Synuclein Associated With Parkinson's Disease” (英語). Nature Chemistry 7 (11): 913–20. Bibcode2015NatCh...7..913M. doi:10.1038/nchem.2361. PMC 4618406. PMID 26492012. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618406/. 
  60. ^ a b Gorelik, A; Bartual, SG; Borodkin, VS; Varghese, J; Ferenbach, AT; van Aalten, DMF (November 2019). “Genetic Recoding to Dissect the Roles of Site-Specific Protein O-GlcNAcylation” (英語). Nature Structural & Molecular Biology 26 (11): 1071–1077. doi:10.1038/s41594-019-0325-8. PMC 6858883. PMID 31695185. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858883/. 
  61. ^ Lewis, YE; Galesic, A; Levine, PM; De Leon, CA; Lamiri, N; Brennan, CK; Pratt, MR (2017-04-21). “O-GlcNAcylation of α-Synuclein at Serine 87 Reduces Aggregation Without Affecting Membrane Binding” (英語). ACS Chemical Biology 12 (4): 1020–1027. doi:10.1021/acschembio.7b00113. PMC 5607117. PMID 28195695. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5607117/. 
  62. ^ a b Chuh, Kelly N.; Batt, Anna R.; Zaro, Balyn W.; Darabedian, Narek; Marotta, Nicholas P.; Brennan, Caroline K.; Amirhekmat, Arya; Pratt, Matthew R. (2017-06-14). “The New Chemical Reporter 6-Alkynyl-6-deoxy-GlcNAc Reveals O-GlcNAc Modification of the Apoptotic Caspases That Can Block the Cleavage/Activation of Caspase-8”. Journal of the American Chemical Society 139 (23): 7872–7885. doi:10.1021/jacs.7b02213. ISSN 0002-7863. PMC 6225779. PMID 28528544. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6225779/. 
  63. ^ Maynard, JC; Burlingame, AL; Medzihradszky, KF (November 2016). “Cysteine S-linked N-acetylglucosamine (S-GlcNAcylation), A New Post-translational Modification in Mammals” (英語). Molecular & Cellular Proteomics 15 (11): 3405–3411. doi:10.1074/mcp.M116.061549. PMC 5098038. PMID 27558639. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5098038/. 
  64. ^ Macauley, MS; Stubbs, KA; Vocadlo, DJ (2005-12-14). “O-GlcNAcase Catalyzes Cleavage of Thioglycosides Without General Acid Catalysis” (英語). Journal of the American Chemical Society 127 (49): 17202–3. doi:10.1021/ja0567687. PMID 16332065. http://summit.sfu.ca/item/20410. 
  65. ^ Mehta, AY; Veeraiah, RKH; Dutta, S; Goth, CK; Hanes, MS; Gao, C; Stavenhagen, K; Kardish, R et al. (17 September 2020). “Parallel Glyco-SPOT Synthesis of Glycopeptide Libraries.”. Cell Chemical Biology 27 (9): 1207–1219.e9. doi:10.1016/j.chembiol.2020.06.007. PMC 7556346. PMID 32610041. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7556346/. 
  66. ^ De Leon, CA; Levine, PM; Craven, TW; Pratt, MR (2017-07-11). “The Sulfur-Linked Analogue of O-GlcNAc (S-GlcNAc) Is an Enzymatically Stable and Reasonable Structural Surrogate for O-GlcNAc at the Peptide and Protein Levels” (英語). Biochemistry 56 (27): 3507–3517. doi:10.1021/acs.biochem.7b00268. PMC 5598463. PMID 28627871. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5598463/. 
  67. ^ Ramirez, DH; Aonbangkhen, C; Wu, HY; Naftaly, JA; Tang, S; O'Meara, TR; Woo, CM (2020-04-17). “Engineering a Proximity-Directed O-GlcNAc Transferase for Selective Protein O-GlcNAcylation in Cells” (英語). ACS Chemical Biology 15 (4): 1059–1066. doi:10.1021/acschembio.0c00074. PMC 7296736. PMID 32119511. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7296736/. 
  68. ^ a b Ferrer, Christina M.; Lynch, Thomas P.; Sodi, Valerie L.; Falcone, John N.; Schwab, Luciana P.; Peacock, Danielle L.; Vocadlo, David J.; Seagroves, Tiffany N. et al. (2014-06-05). “O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway”. Molecular Cell 54 (5): 820–831. doi:10.1016/j.molcel.2014.04.026. ISSN 1097-4164. PMC 4104413. PMID 24857547. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104413/. 
  69. ^ a b Ma, Z; Vocadlo, DJ; Vosseller, K (2013-05-24). “Hyper-O-GlcNAcylation Is Anti-Apoptotic and Maintains Constitutive NF-κB Activity in Pancreatic Cancer Cells” (英語). The Journal of Biological Chemistry 288 (21): 15121–30. doi:10.1074/jbc.M113.470047. PMC 3663532. PMID 23592772. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663532/. 
  70. ^ Torres, IO; Fujimori, DG (December 2015). “Functional Coupling Between Writers, Erasers and Readers of Histone and DNA Methylation” (英語). Current Opinion in Structural Biology 35: 68–75. doi:10.1016/j.sbi.2015.09.007. PMC 4688207. PMID 26496625. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4688207/. 
  71. ^ a b Chu, CS; Lo, PW; Yeh, YH; Hsu, PH; Peng, SH; Teng, YC; Kang, ML; Wong, CH et al. (2014-01-28). “O-GlcNAcylation Regulates EZH2 Protein Stability and Function” (英語). Proceedings of the National Academy of Sciences of the United States of America 111 (4): 1355–60. Bibcode2014PNAS..111.1355C. doi:10.1073/pnas.1323226111. PMC 3910655. PMID 24474760. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3910655/. 
  72. ^ Lo, PW; Shie, JJ; ChChen, CH; Wu, CY; Hsu, TL; Wong, CH (2018-07-10). “O-GlcNAcylation Regulates the Stability and Enzymatic Activity of the Histone Methyltransferase EZH2” (英語). Proceedings of the National Academy of Sciences of the United States of America 115 (28): 7302–7307. Bibcode2018PNAS..115.7302L. doi:10.1073/pnas.1801850115. PMC 6048490. PMID 29941599. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048490/. 
  73. ^ Zhang, Q; Liu, X; Gao, W; Li, P; Hou, J; Li, J; Wong, J (2014-02-28). “Differential Regulation of the Ten-Eleven Translocation (TET) Family of Dioxygenases by O-linked β-N-acetylglucosamine Transferase (OGT)” (英語). Journal of Biological Chemistry 289 (9): 5986–96. doi:10.1074/jbc.M113.524140. PMC 3937666. PMID 24394411. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3937666/. 
  74. ^ Zhang, Qiao; Liu, Xiaoguang; Gao, Wenqi; Li, Pishun; Hou, Jingli; Li, Jiwen; Wong, Jiemin (2014-02-28). “Differential Regulation of the Ten-Eleven Translocation (TET) Family of Dioxygenases by O-Linked β-N-Acetylglucosamine Transferase (OGT)”. Journal of Biological Chemistry 289 (9): 5986–5996. doi:10.1074/jbc.M113.524140. ISSN 0021-9258. PMC 3937666. PMID 24394411. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3937666/. 
  75. ^ a b c Zhu, Guizhou; Tao, Tao; Zhang, Dongmei; Liu, Xiaojuan; Qiu, Huiyuan; Han, LiJian; Xu, Zhiwei; Xiao, Ying et al. (Aug 2016). “O-GlcNAcylation of histone deacetylases 1 in hepatocellular carcinoma promotes cancer progression”. Glycobiology 26 (8): 820–833. doi:10.1093/glycob/cww025. ISSN 1460-2423. PMID 27060025. 
  76. ^ Fong, Jerry J.; Nguyen, Brenda L.; Bridger, Robert; Medrano, Estela E.; Wells, Lance; Pan, Shujuan; Sifers, Richard N. (2012-04-06). “β-N-Acetylglucosamine (O-GlcNAc) Is a Novel Regulator of Mitosis-specific Phosphorylations on Histone H3”. Journal of Biological Chemistry 287 (15): 12195–12203. doi:10.1074/jbc.M111.315804. ISSN 0021-9258. PMC 3320971. PMID 22371497. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320971/. 
  77. ^ a b c Fujiki, R; Hashiba, W; Sekine, H; Yokoyama, A; Chikanishi, T; Ito, S; Imai, Y; Kim, J et al. (2011-11-27). “GlcNAcylation of Histone H2B Facilitates Its Monoubiquitination” (英語). Nature 480 (7378): 557–60. Bibcode2011Natur.480..557F. doi:10.1038/nature10656. PMC 7289526. PMID 22121020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289526/. 
  78. ^ Chen, Q; Chen, Y; Bian, C; Fujiki, R; Yu, X (2013-01-24). “TET2 Promotes Histone O-GlcNAcylation During Gene Transcription” (英語). Nature 493 (7433): 561–4. Bibcode2013Natur.493..561C. doi:10.1038/nature11742. PMC 3684361. PMID 23222540. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3684361/. 
  79. ^ a b c Xu, Qiuran; Yang, Caihong; Du, Yu; Chen, Yali; Liu, Hailong; Deng, Min; Zhang, Haoxing; Zhang, Lei et al. (2014-05-01). “AMPK regulates histone H2B O-GlcNAcylation”. Nucleic Acids Research 42 (9): 5594–5604. doi:10.1093/nar/gku236. ISSN 0305-1048. PMC 4027166. PMID 24692660. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4027166/. 
  80. ^ Kreppel, L. K.; Hart, G. W. (1999-11-05). “Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats”. Journal of Biological Chemistry 274 (45): 32015–32022. doi:10.1074/jbc.274.45.32015. ISSN 0021-9258. PMID 10542233. 
  81. ^ Zou, Luyun; Zhu-Mauldin, Xiaoyuan; Marchase, Richard B.; Paterson, Andrew J.; Liu, Jian; Yang, Qinglin; Chatham, John C. (2012-10-05). “Glucose deprivation-induced increase in protein O-GlcNAcylation in cardiomyocytes is calcium-dependent”. The Journal of Biological Chemistry 287 (41): 34419–34431. doi:10.1074/jbc.M112.393207. ISSN 1083-351X. PMC 3464547. PMID 22908225. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3464547/. 
  82. ^ Cheung, Win D.; Hart, Gerald W. (2008-05-09). “AMP-activated Protein Kinase and p38 MAPK Activate O-GlcNAcylation of Neuronal Proteins during Glucose Deprivation”. Journal of Biological Chemistry 283 (19): 13009–13020. doi:10.1074/jbc.M801222200. ISSN 0021-9258. PMC 2435304. PMID 18353774. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2435304/. 
  83. ^ Taylor, Rodrick P.; Parker, Glendon J.; Hazel, Mark W.; Soesanto, Yudi; Fuller, William; Yazzie, Marla J.; McClain, Donald A. (2008-03-07). “Glucose deprivation stimulates O-GlcNAc modification of proteins through up-regulation of O-linked N-acetylglucosaminyltransferase”. Journal of Biological Chemistry 283 (10): 6050–6057. doi:10.1074/jbc.M707328200. ISSN 0021-9258. PMID 18174169. 
  84. ^ Chen, PH; Smith, TJ; Wu, J; Siesser, PJ; Bisnett, BJ; Khan, F; Hogue, M; Soderblom, E et al. (2017-08-01). “Glycosylation of KEAP1 Links Nutrient Sensing to Redox Stress Signaling” (英語). The EMBO Journal 36 (15): 2233–2250. doi:10.15252/embj.201696113. PMC 5538768. PMID 28663241. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5538768/. 
  85. ^ McGreal, SR; Bhushan, B; Walesky, C; McGill, MR; Lebofsky, M; Kandel, SE; Winefield, RD; Jaeschke, H et al. (2018-04-01). “Modulation of O-GlcNAc Levels in the Liver Impacts Acetaminophen-Induced Liver Injury by Affecting Protein Adduct Formation and Glutathione Synthesis” (英語). Toxicological Sciences 162 (2): 599–610. doi:10.1093/toxsci/kfy002. PMC 6012490. PMID 29325178. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6012490/. 
  86. ^ a b Yuzwa, SA; Shan, X; Macauley, MS; Clark, T; Skorobogatko, Y; Vosseller, K; Vocadlo, DJ (2012-02-26). “Increasing O-GlcNAc Slows Neurodegeneration and Stabilizes Tau Against Aggregation” (英語). Nature Chemical Biology 8 (4): 393–9. doi:10.1038/nchembio.797. PMID 22366723. 
  87. ^ Cheng, X.; Cole, R. N.; Zaia, J.; Hart, G. W. (2000-09-26). “Alternative O-glycosylation/O-phosphorylation of the murine estrogen receptor beta”. Biochemistry 39 (38): 11609–11620. doi:10.1021/bi000755i. ISSN 0006-2960. PMID 10995228. 
  88. ^ Comer, F. I.; Hart, G. W. (2001-07-03). “Reciprocity between O-GlcNAc and O-phosphate on the carboxyl terminal domain of RNA polymerase II”. Biochemistry 40 (26): 7845–7852. doi:10.1021/bi0027480. ISSN 0006-2960. PMID 11425311. 
  89. ^ a b Liu, Fei; Iqbal, Khalid; Grundke-Iqbal, Inge; Hart, Gerald W.; Gong, Cheng-Xin (2004-07-20). “O-GlcNAcylation regulates phosphorylation of tau: A mechanism involved in Alzheimer's disease”. Proceedings of the National Academy of Sciences of the United States of America 101 (29): 10804–10809. Bibcode2004PNAS..10110804L. doi:10.1073/pnas.0400348101. ISSN 0027-8424. PMC 490015. PMID 15249677. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC490015/. 
  90. ^ a b Yang, WH; Kim, JE; Nam, HW; Ju, JW; Kim, HS; Kim, YS; Cho, JW (Oct 2006). “Modification of p53 With O-linked N-acetylglucosamine Regulates p53 Activity and Stability” (英語). Nature Cell Biology 8 (10): 1074–83. doi:10.1038/ncb1470. PMID 16964247. 
  91. ^ a b Dias, WB; Cheung, WD; Wang, Z; Hart, GW (2009-08-07). “Regulation of Calcium/Calmodulin-Dependent Kinase IV by O-GlcNAc Modification” (英語). Journal of Biological Chemistry 284 (32): 21327–37. doi:10.1074/jbc.M109.007310. PMC 2755857. PMID 19506079. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755857/. 
  92. ^ a b c Ma, Z; Chalkley, RJ; Vosseller, K (2017-06-02). “Hyper- O-GlcNAcylation Activates Nuclear Factor κ-Light-Chain-Enhancer of Activated B Cells (NF-κB) Signaling Through Interplay With Phosphorylation and Acetylation” (英語). The Journal of Biological Chemistry 292 (22): 9150–9163. doi:10.1074/jbc.M116.766568. PMC 5454098. PMID 28416608. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5454098/. 
  93. ^ a b c Olivier-Van Stichelen, Stéphanie; Dehennaut, Vanessa; Buzy, Armelle; Zachayus, Jean-Luc; Guinez, Céline; Mir, Anne-Marie; El Yazidi-Belkoura, Ikram; Copin, Marie-Christine et al. (Aug 2014). “O-GlcNAcylation stabilizes β-catenin through direct competition with phosphorylation at threonine 41”. FASEB Journal 28 (8): 3325–3338. doi:10.1096/fj.13-243535. ISSN 1530-6860. PMC 4101651. PMID 24744147. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4101651/. 
  94. ^ a b Huang, Xun; Pan, Qiuming; Sun, Danni; Chen, Wei; Shen, Aijun; Huang, Min; Ding, Jian; Geng, Meiyu (2013-12-20). “O-GlcNAcylation of Cofilin Promotes Breast Cancer Cell Invasion”. Journal of Biological Chemistry 288 (51): 36418–36425. doi:10.1074/jbc.M113.495713. ISSN 0021-9258. PMC 3868755. PMID 24214978. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868755/. 
  95. ^ a b c Selnick, Harold G.; Hess, J. Fred; Tang, Cuyue; Liu, Kun; Schachter, Joel B.; Ballard, Jeanine E.; Marcus, Jacob; Klein, Daniel J. et al. (Nov 2019). “Discovery of MK-8719, a Potent O-GlcNAcase Inhibitor as a Potential Treatment for Tauopathies”. Journal of Medicinal Chemistry 62 (22): 10062–10097. doi:10.1021/acs.jmedchem.9b01090. ISSN 1520-4804. PMID 31487175. 
  96. ^ Schwein, Paul A; Woo, Christina M (2020-03-20). “The O-GlcNAc Modification on Kinases” (英語). ACS Chemical Biology 15 (3): 602–617. doi:10.1021/acschembio.9b01015. PMC 7253032. PMID 32155042. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7253032/. 
  97. ^ a b c Bullen, JW; Balsbaugh, JL; Chanda, D; Shabanowitz, J; Hunt, DF; Neumann, D; Hart, GW (2014-04-11). “Cross-talk Between Two Essential Nutrient-Sensitive Enzymes: O-GlcNAc Transferase (OGT) and AMP-activated Protein Kinase (AMPK)” (英語). Journal of Biological Chemistry 289 (15): 10592–606. doi:10.1074/jbc.M113.523068. PMC 4036179. PMID 24563466. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4036179/. 
  98. ^ a b Luo, Bai; Parker, Glendon J.; Cooksey, Robert C.; Soesanto, Yudi; Evans, Mark; Jones, Deborah; McClain, Donald A. (2007-03-09). “Chronic hexosamine flux stimulates fatty acid oxidation by activating AMP-activated protein kinase in adipocytes”. Journal of Biological Chemistry 282 (10): 7172–7180. doi:10.1074/jbc.M607362200. ISSN 0021-9258. PMID 17227772. 
  99. ^ a b Sodi, VL; Bacigalupa, ZA; Ferrer, CM; Lee, JV; Gocal, WA; Mukhopadhyay, D; Wellen, KE; Ivan, M et al. (2018-02-15). “Nutrient Sensor O-GlcNAc Transferase Controls Cancer Lipid Metabolism via SREBP-1 Regulation” (英語). Oncogene 37 (7): 924–934. doi:10.1038/onc.2017.395. PMC 5814337. PMID 29059153. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5814337/. 
  100. ^ Wells, Lance; Kreppel, Lisa K.; Comer, Frank I.; Wadzinski, Brian E.; Hart, Gerald W. (2004-09-10). “O-GlcNAc transferase is in a functional complex with protein phosphatase 1 catalytic subunits”. The Journal of Biological Chemistry 279 (37): 38466–38470. doi:10.1074/jbc.M406481200. ISSN 0021-9258. PMID 15247246. 
  101. ^ Cheung, Win D.; Sakabe, Kaoru; Housley, Michael P.; Dias, Wagner B.; Hart, Gerald W. (2008-12-05). “O-linked beta-N-acetylglucosaminyltransferase substrate specificity is regulated by myosin phosphatase targeting and other interacting proteins”. The Journal of Biological Chemistry 283 (49): 33935–33941. doi:10.1074/jbc.M806199200. ISSN 0021-9258. PMC 2590692. PMID 18840611. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590692/. 
  102. ^ Yang, X.; Su, K.; Roos, M. D.; Chang, Q.; Paterson, A. J.; Kudlow, J. E. (2001-06-05). “O-linkage of N-acetylglucosamine to Sp1 activation domain inhibits its transcriptional capability”. Proceedings of the National Academy of Sciences of the United States of America 98 (12): 6611–6616. Bibcode2001PNAS...98.6611Y. doi:10.1073/pnas.111099998. ISSN 0027-8424. PMC 34401. PMID 11371615. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC34401/. 
  103. ^ Lamarre-Vincent, Nathan; Hsieh-Wilson, Linda C. (2003-06-04). “Dynamic glycosylation of the transcription factor CREB: a potential role in gene regulation”. Journal of the American Chemical Society 125 (22): 6612–6613. doi:10.1021/ja028200t. ISSN 0002-7863. PMID 12769553. https://authors.library.caltech.edu/57654/2/ja028200tsi20030418_012614_si.pdf. 
  104. ^ Rexach, Jessica E.; Clark, Peter M.; Mason, Daniel E.; Neve, Rachael L.; Peters, Eric C.; Hsieh-Wilson, Linda C. (2012-01-22). “Dynamic O-GlcNAc modification regulates CREB-mediated gene expression and memory formation”. Nature Chemical Biology 8 (3): 253–261. doi:10.1038/nchembio.770. ISSN 1552-4469. PMC 3288555. PMID 22267118. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3288555/. 
  105. ^ Toleman, Clifford A.; Schumacher, Maria A.; Yu, Seok-Ho; Zeng, Wenjie; Cox, Nathan J.; Smith, Timothy J.; Soderblom, Erik J.; Wands, Amberlyn M. et al. (2018-06-05). “Structural basis of O-GlcNAc recognition by mammalian 14-3-3 proteins”. Proceedings of the National Academy of Sciences of the United States of America 115 (23): 5956–5961. Bibcode2018PNAS..115.5956T. doi:10.1073/pnas.1722437115. ISSN 0027-8424. PMC 6003352. PMID 29784830. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6003352/. 
  106. ^ Guinez, Céline; Lemoine, Jérôme; Michalski, Jean-Claude; Lefebvre, Tony (2004-06-18). “70-kDa-heat shock protein presents an adjustable lectinic activity towards O-linked N-acetylglucosamine”. Biochemical and Biophysical Research Communications 319 (1): 21–26. doi:10.1016/j.bbrc.2004.04.144. ISSN 0006-291X. PMID 15158436. 
  107. ^ Zhang, F; Su, K; Yang, X; Bowe, DB; Paterson, AJ; Kudlow, JE (2003-12-12). “O-GlcNAc Modification Is an Endogenous Inhibitor of the Proteasome” (英語). Cell 115 (6): 715–25. doi:10.1016/s0092-8674(03)00974-7. PMID 14675536. 
  108. ^ Zhang, Fengxue; Hu, Yong; Huang, Ping; Toleman, Clifford A.; Paterson, Andrew J.; Kudlow, Jeffrey E. (2007-08-03). “Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6”. The Journal of Biological Chemistry 282 (31): 22460–22471. doi:10.1074/jbc.M702439200. ISSN 0021-9258. PMID 17565987. 
  109. ^ Keembiyehetty, Chithra N.; Krzeslak, Anna; Love, Dona C.; Hanover, John A. (2011-08-15). “A lipid-droplet-targeted O-GlcNAcase isoform is a key regulator of the proteasome”. Journal of Cell Science 124 (Pt 16): 2851–2860. doi:10.1242/jcs.083287. ISSN 1477-9137. PMC 3148132. PMID 21807949. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3148132/. 
  110. ^ Zachara, Natasha E.; O'Donnell, Niall; Cheung, Win D.; Mercer, Jessica J.; Marth, Jamey D.; Hart, Gerald W. (2004-07-16). “Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells”. The Journal of Biological Chemistry 279 (29): 30133–30142. doi:10.1074/jbc.M403773200. ISSN 0021-9258. PMID 15138254. 
  111. ^ Iqbal, Khalid; Liu, Fei; Gong, Cheng-Xin; Grundke-Iqbal, Inge (December 2010). “Tau in Alzheimer Disease and Related Tauopathies”. Current Alzheimer Research 7 (8): 656–664. doi:10.2174/156720510793611592. ISSN 1567-2050. PMC 3090074. PMID 20678074. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3090074/. 
  112. ^ Arnold, CS; Johnson, GV; Cole, RN; Dong, DL; Lee, M; Hart, GW (1996-11-15). “The Microtubule-Associated Protein Tau Is Extensively Modified With O-linked N-acetylglucosamine” (英語). Journal of Biological Chemistry 271 (46): 28741–4. doi:10.1074/jbc.271.46.28741. PMID 8910513. 
  113. ^ O'Donnell, Niall; Zachara, Natasha E.; Hart, Gerald W.; Marth, Jamey D. (2004-02). “Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability”. Molecular and Cellular Biology 24 (4): 1680–1690. doi:10.1128/MCB.24.4.1680-1690.2004. ISSN 0270-7306. PMC PMC344186. PMID 14749383. https://pubmed.ncbi.nlm.nih.gov/14749383. 
  114. ^ Sandhu, Punam; Lee, Junghoon; Ballard, Jeanine; Walker, Brittany; Ellis, Joan; Marcus, Jacob; Toolan, Dawn; Dreyer, Daniel et al. (July 2016). “P4-036: Pharmacokinetics and Pharmacodynamics to Support Clinical Studies of MK-8719: an O-GlcNAcase Inhibitor for Progressive Supranuclear Palsy” (英語). Alzheimer's & Dementia 12 (7S_Part_21): P1028. doi:10.1016/j.jalz.2016.06.2125. 
  115. ^ Medina, Miguel (2018-04-11). “An Overview on the Clinical Development of Tau-Based Therapeutics”. International Journal of Molecular Sciences 19 (4): 1160. doi:10.3390/ijms19041160. ISSN 1422-0067. PMC 5979300. PMID 29641484. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5979300/. 
  116. ^ Yi, Wen; Clark, Peter M.; Mason, Daniel E.; Keenan, Marie C.; Hill, Collin; Goddard, William A.; Peters, Eric C.; Driggers, Edward M. et al. (2012-08-24). “PFK1 Glycosylation Is a Key Regulator of Cancer Cell Growth and Central Metabolic Pathways”. Science 337 (6097): 975–980. doi:10.1126/science.1222278. ISSN 0036-8075. PMC 3534962. PMID 22923583. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3534962/. 
  117. ^ Caldwell, SA; Jackson, SR; Shahriari, KS; Lynch, TP; Sethi, G; Walker, S; Vosseller, K; Reginato, MJ (2010-05-13). “Nutrient Sensor O-GlcNAc Transferase Regulates Breast Cancer Tumorigenesis Through Targeting of the Oncogenic Transcription Factor FoxM1” (英語). Oncogene 29 (19): 2831–42. doi:10.1038/onc.2010.41. PMID 20190804. 
  118. ^ Lynch, TP; Ferrer, CM; Jackson, SR; Shahriari, KS; Vosseller, K; Reginato, MJ (2012-03-30). “Critical Role of O-Linked β-N-acetylglucosamine Transferase in Prostate Cancer Invasion, Angiogenesis, and Metastasis” (英語). The Journal of Biological Chemistry 287 (14): 11070–81. doi:10.1074/jbc.M111.302547. PMC 3322861. PMID 22275356. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322861/. 
  119. ^ Liu, K; Paterson, AJ; Chin, E; Kudlow, JE (2000-03-14). “Glucose Stimulates Protein Modification by O-linked GlcNAc in Pancreatic Beta Cells: Linkage of O-linked GlcNAc to Beta Cell Death” (英語). Proceedings of the National Academy of Sciences of the United States of America 97 (6): 2820–5. Bibcode2000PNAS...97.2820L. doi:10.1073/pnas.97.6.2820. PMC 16013. PMID 10717000. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC16013/. 
  120. ^ Pathak, Shalini; Dorfmueller, Helge C.; Borodkin, Vladimir S.; van Aalten, Daan M.F. (2008-08-25). “Chemical Dissection of the Link between Streptozotocin, O-GlcNAc, and Pancreatic Cell Death”. Chemistry & Biology 15 (8): 799–807. doi:10.1016/j.chembiol.2008.06.010. ISSN 1074-5521. PMC 2568864. PMID 18721751. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2568864/. 
  121. ^ a b Vosseller, K; Wells, L; Lane, MD; Hart, GW (2002-04-16). “Elevated Nucleocytoplasmic Glycosylation by O-GlcNAc Results in Insulin Resistance Associated With Defects in Akt Activation in 3T3-L1 Adipocytes” (英語). Proceedings of the National Academy of Sciences of the United States of America 99 (8): 5313–8. Bibcode2002PNAS...99.5313V. doi:10.1073/pnas.072072399. PMC 122766. PMID 11959983. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC122766/. 
  122. ^ Yang, X; Ongusaha, PP; Miles, PD; Havstad, JC; Zhang, F; So, WV; Kudlow, JE; Michell, RH et al. (2008). “Phosphoinositide Signalling Links O-GlcNAc Transferase to Insulin Resistance” (英語). Nature 451 (7181): 964–9. Bibcode2008Natur.451..964Y. doi:10.1038/nature06668. PMID 18288188. 
  123. ^ Whelan, Stephen A.; Lane, M. Daniel; Hart, Gerald W. (2008-08-01). “Regulation of the O-Linked β-N-Acetylglucosamine Transferase by Insulin Signaling”. Journal of Biological Chemistry 283 (31): 21411–21417. doi:10.1074/jbc.M800677200. ISSN 0021-9258. PMC 2490780. PMID 18519567. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2490780/. 
  124. ^ Macauley, MS; Bubb, AK; Martinez-Fleites, C; Davies, GJ; Vocadlo, DJ (2008-12-12). “Elevation of Global O-GlcNAc Levels in 3T3-L1 Adipocytes by Selective Inhibition of O-GlcNAcase Does Not Induce Insulin Resistance” (英語). The Journal of Biological Chemistry 283 (50): 34687–95. doi:10.1074/jbc.M804525200. PMC 3259902. PMID 18842583. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3259902/. 
  125. ^ Stefanis, Leonidas (Feb 2012). “α-Synuclein in Parkinson's Disease”. Cold Spring Harbor Perspectives in Medicine 2 (2): a009399. doi:10.1101/cshperspect.a009399. ISSN 2157-1422. PMC 3281589. PMID 22355802. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281589/. 
  126. ^ Glycosylation as an Inhibitor of Alpha-synuclein Aggregation” (英語). The Michael J. Fox Foundation for Parkinson's Research | Parkinson's Disease. 2020年6月5日閲覧。
  127. ^ Ryu, In-Hyun; Do, Su-Il (2011-04-29). “Denitrosylation of S-nitrosylated OGT is triggered in LPS-stimulated innate immune response”. Biochemical and Biophysical Research Communications 408 (1): 52–57. doi:10.1016/j.bbrc.2011.03.115. ISSN 1090-2104. PMID 21453677. 
  128. ^ Wang, Qiming; Fang, Peining; He, Rui; Li, Mengqi; Yu, Haisheng; Zhou, Li; Yi, Yu; Wang, Fubing et al. (2020-04-15). “O-GlcNAc transferase promotes influenza A virus–induced cytokine storm by targeting interferon regulatory factor–5”. Science Advances 6 (16): eaaz7086. Bibcode2020SciA....6.7086W. doi:10.1126/sciadv.aaz7086. ISSN 2375-2548. PMC 7159909. PMID 32494619. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7159909/. 
  129. ^ Kaspar, AA; Reichert, JM (Sep 2013). “Future Directions for Peptide Therapeutics Development” (英語). Drug Discovery Today 18 (17–18): 807–17. doi:10.1016/j.drudis.2013.05.011. PMID 23726889. 
  130. ^ Levine, PM; Balana, AT; Sturchler, E; Koole, C; Noda, H; Zarzycka, B; Daley, EJ; Truong, TT et al. (2019-09-11). “O-GlcNAc Engineering of GPCR Peptide-Agonists Improves Their Stability and in Vivo Activity” (英語). Journal of the American Chemical Society 141 (36): 14210–14219. doi:10.1021/jacs.9b05365. PMC 6860926. PMID 31418572. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6860926/. 





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  O-GlcNAcのページへのリンク

辞書ショートカット

すべての辞書の索引

「O-GlcNAc」の関連用語

O-GlcNAcのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



O-GlcNAcのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのO-GlcNAc (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS