天体力学
古典力学 |
---|
![]() |

天体力学(てんたいりきがく、英: celestial mechanics)[1]は、万有引力の法則に従う天体の運動を古典力学に基づいて扱う学問である。ニュートン力学から成立した物理学の一分野であり[2]、また位置天文学と並び古典天文学の一角を占める[3]。
惑星の公転運動は主に太陽の重力によって支配されている(ケプラーの法則)ものの、他の惑星などが及ぼす重力が摂動として無視できない影響を及ぼすため、天体力学ではそのような摂動を解析的に取り扱う摂動論が発達した。その最も単純かつ非自明な問題が三体問題である。月の運動は暦の編纂(へんさん)や航海術への応用という実用的な目的のためにとりわけ精確な予測が求められる一方で、惑星の運動に比べ摂動が大きく影響するため、太陰運動論は何世代にも渡って改良されてきた。また天王星の観測データの異常から海王星の存在を予言しその位置を予測したことでも知られる。
天体力学は軌道共鳴、太陽系の安定性、自転軸の歳差と章動、惑星の平衡形状、自転と公転の同期といった問題をも扱う。20世紀には人工衛星・宇宙探査機の軌道設計および軌道制御を扱う軌道力学が派生し、また天体力学の適用対象も太陽系から惑星形成、ブラックホール、そして球状星団および銀河などへと拡大した。
ケプラー運動
中心天体(例えば太陽)からの重力(万有引力の法則)を受ける天体(例えば惑星)の運動はケプラー運動と呼ばれる[4]。ケプラー運動では、天体の位置 地球の自転軸は月と太陽および他の惑星による摂動を受け、複雑に変化する[140]。このうち長周期での軸の移動を歳差 (英: precession)[141]、より短周期での振動を章動 (英: nutation)[142] と呼ぶ。歳差の周期は約2万6000年であり、春分点の移動をもたらす[143]。章動のうちもっとも振幅の大きな成分は周期18.6年であり、月の昇交点がこの周期で移動していることによる[144]。歳差および章動は木下宙によって1977年に精密な理論が構築された[145][146]。
潮汐力 (英: tidal force)[147]は重力の非一様性のために生じる非一様な重力の作用であり[148]、月および太陽による潮汐力は海の潮汐の原因として知られている[149]。潮汐力はまた天体の潮汐変形、潮汐トルク、潮汐加熱[150]といった現象を引き起こす[149]。例えば地球の表面における月による潮汐力は、ポテンシャル
月は(秤動 (英: libration) を除き)常に同じ面を地球に向けているが、これは月の自転周期と公転周期が同期しているためである。これは地球の重力による月の潮汐変形が原因であり[160][161]、潮汐ロックと呼ばれる[162]。
重力相互作用する3天体の運動を求める問題は三体問題として知られる。第三体の質量が他の二体に比べて極めて小さく、二体に及ぼす重力が無視できるとき制限三体問題と呼び、特に二体が円運動するときを円制限三体問題と呼ぶ[163]。この問題は多くの人の手によって調べられてきており[164]、三体問題は求積法により解くことはできないものの[165][166]、特殊解のひとつであるラグランジュ点はよく知られている[167]。
土星や天王星に存在する環は衛星と相互に重力を及ぼし合う[168]。環の構造や安定性、羊飼い衛星[169]といった問題が取り扱われる[170][171]。
彗星は大きな離心率を持ち、特に極端なものはサングレーザーと呼ばれる[172]。しばしば彗星は木星との近接散乱により大きな摂動を受けるが、これは円制限三体問題とみなすことができ、ティスランの判定式によって彗星の同一性を判定できる[173]。また彗星が大きな離心率を獲得する機構として古在メカニズムが提案されている[172]。
小惑星などの太陽系小天体の軌道はカオスを示すことでも注目される[174]。小惑星帯の小惑星の多くは小惑星-木星系の、または小惑星-木星-土星系の平均運動共鳴に由来するカオス軌道を持つ[175]。これは軌道要素のカオス拡散といった効果を生じる[175]。
また宇宙塵などの小天体の場合、輻射圧などの重力以外の摂動が軌道進化において重要である場合がある[176]。
厳密には天体は球形ではなく、それに対応して天体の重力ポテンシャルには単極子項への補正が存在する(多重極展開)。これは特に地球を周回する人工衛星の軌道に最も大きな摂動として寄与するため、軌道力学では重力ポテンシャルの補正を考慮する必要がある[177]。軸対称な天体の場合には、重力ポテンシャル ニュートンのプリンキピアは当時考案されたばかりの微分法および積分法の使用を避け幾何学的な考察に基づくものであり極めて難解なものであった。プリンキピアの出版後18世紀初頭にかけてピエール・ヴァリニョン (1654-1722)、ヨハン・ベルヌーイ (1667-1748)、Jakob Hermann (1678-1733) らはプリンキピアの内容をゴットフリート・ライプニッツ (1646-1716) らによる微積分学の言葉を用いて理解するようになった[207]。1730年頃からはダニエル・ベルヌーイ (1700-1782)、レオンハルト・オイラー (1707-1783)、アレクシス・クレロー (1713-1765)、ジャン・ル・ロン・ダランベール (1717-1783)らによって保存則やポテンシャルの概念などが導入され、1760年頃までには現在の力学に近い形にまで整備された[208]。ダランベールは1743年に Traité de dynamique を出版した[209]。オイラーは1749年にニュートンの運動方程式を初めて現在知られている形で書き下している[210][211][212]。ジョゼフ=ルイ・ラグランジュ (1736-1813) は1750年代から統一的な原理に基づく力学の再構築に取り組み、現在解析力学(特にラグランジュ力学)として知られる体系を1788年の著書 Mécanique analytique にまとめ上げた[208][213]。
上述のように、アイザック・ニュートンはプリンキピアにおいて惑星軌道が円錐曲線であるならば逆二乗則に従う中心力が作用していることを示したものの、逆に逆二乗則の重力を受けて運動する物体の軌道がどのようなものかという問題に対しては十分な回答を著述しなかった。この問題は1710年の Jakob Hermann の研究[214]、そしてそれに続くヨハン・ベルヌーイの研究[215]によって解決された[216][217]。
1730年代にピエール・ルイ・モーペルテュイ (1698-1759) 率いる観測隊は地球が赤道付近で膨らんでいる扁球であることを証明した(フランス科学アカデミーによる測地遠征)[218]。これにより地球の形状に関するジャック・カッシーニ (1677-1756) の測量[219][220]が棄却され、それと対立していたニュートンの理論の正しさが明らかになった[221][222]。この観測に参加していたアレクシス・クレローは地球の形状に関する1743年の著書 Théorie de la figure de la terre を出版した後に天体力学の研究を始め、1747年11月にパリで三体問題に関する口頭発表を行い、月の近地点移動を説明するためには万有引力の法則に逆三乗則に従う付加項が必要であると主張した[223](逆二乗則に補正を加えるというアイデアは John Keill にまで遡る[224])。この主張は激しい拒否反応を引き起こし、短距離側ではなく遠距離側で万有引力の法則を修正する必要があると考えていたレオンハルト・オイラーとの間で論戦となった[225][224]。ダランベールもこの問題に興味を示し、独自のアイデアで研究に参入した[226]。1714年に英国が定めた経度法の懸賞金に繋がる可能性から[227]月の近地点移動はこの三者による研究競争となったものの、1749年にクレローは当初の主張を撤回し当時は無視されていた太陽による高次摂動を考慮することによって月の近地点移動を説明できることを示し[226]、この成果によって帝国サンクトペテルブルク科学アカデミーの賞を1750年に獲得した(受賞論文 Théorie de la lune は1753年に出版された)[228][212]。その後クレローはハレー彗星の軌道の摂動計算などの研究を行っている[229]。
1748年にパリの科学アカデミーは木星と土星の相互摂動に関するコンテストを開催し、レオンハルト・オイラーが優勝した(受賞論文は1749年に出版された)[230]。彼は木星と土星の運動のケプラー軌道からの逸脱を完全に説明することはできなかったものの[230]、その後の天体力学の研究において極めて重要な役割を果たす三角級数の方法を導入した[108]。またオイラーの研究には観測データからのパラメータ推定に関する先駆的な業績が含まれている(当時最小二乗法は考案されていなかった)[108]。
トビアス・マイヤー (1723-1762) はオイラーの木星と土星の理論を発展させ太陽-地球-月系に応用することにより[231]、月の天文表を作成し1753年に出版した[232]。その正確さは1760年までにジェームズ・ブラッドリー (1693-1762) の観測によって裏付けられ、1767年に創刊された航海年鑑の基礎となった[232]。
レオンハルト・オイラーは三体問題を求積するために運動の積分を探し求めたものの、必要な数の積分を得ることはできなかった[233]。そこで三体が同一直線に乗る配位の特殊解に目を向け、1766年に三体問題に関する論文 Considerationes de motu corporum coelestium の中で制限三体問題の平衡点であるラグランジュ点のうち直線解と呼ばれる L1, L2 を発見した[234][235]。ラグランジュは1772年にすべての平衡点、特に正三角形解を発見した[236]。ラグランジュはまた一般三体問題の18本の方程式を7本の方程式に帰着できることを示している。
円制限三体問題におけるヤコビ積分は1836年にカール・グスタフ・ヤコブ・ヤコビ (1804-1851) によって導入された[237][234]。
摂動論の基本的な道具立てはジョゼフ=ルイ・ラグランジュによって整備され[238]、ピエール=シモン・ラプラス (1749-1827) によって発展した。接触軌道要素はレオンハルト・オイラーによって厳密に定義された[235]。ラグランジュは月の秤動に関する研究を行い、1764年にフランス科学アカデミーの賞を獲得した[239]。またラグランジュは1779年に摂動関数を導入した[240]。
ピエール=シモン・ラプラスは1773年頃から天体力学の研究を始め、天体の運動および地球の形状・海の潮汐に取り組んだ[241]。ラプラスは1776年に永年摂動の1次の範囲では惑星の軌道長半径は時間変化しないことを示した[123]。また1787年に木星および金星の摂動によって地球軌道の離心率が変化することにより月の永年加速が説明できると主張した(なお半世紀以上が経った1854年にアダムズがラプラスの計算に誤りを発見し、この効果は観測を説明するのに必要な値の半分しかないことを指摘している)[110]。1789年のフランス革命に伴う環境の激変もありながら[242]、ラプラスは1796年に Exposition du système du monde を[243]、1799年から1827年にかけて5巻からなる『天体力学論』[244] (Traité de mécanique céleste) を出版した[245]。この著作は以下の内容を取り扱っている[246]。
ラグランジュは1814年に出版した Mécanique analytique の第2版の中で摂動関数およびラグランジュの惑星方程式といった天体力学の基本的な道具立てをまとめ、高次摂動の系統的な計算が可能であることを示した[238][247]。
ティティウス・ボーデの法則は1766年にヨハン・ティティウス (1729-1796) によって発見され、1772年にヨハン・ボーデ (1747-1826) によって紹介されたことで知られるようになった[248][249]。これは、太陽系惑星の軌道長半径が簡単な数列
1801年1月にジュゼッペ・ピアッツィ (1746-1826) は 潮汐力
その他のトピック
三体問題
環
彗星と太陽系小天体の軌道
重力ポテンシャルの高次成分
二体問題と三体問題
摂動論の開発
軌道決定
- Celestial mechanicsのページへのリンク