ポインティング・ロバートソン効果とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > ポインティング・ロバートソン効果の意味・解説 

ポインティング・ロバートソン効果

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/01/12 22:01 UTC 版)

ポインティング・ロバートソン効果(ポインティング・ロバートソンこうか、: Poynting-Robertson effect, Poynting-Robertson drag)は、恒星を公転する宇宙塵の持つ公転角運動量が、恒星からの輻射圧によって失われる効果を指す[1]。この効果は、塵粒子の運動に垂直な方向にはたらく輻射圧に由来している。名称はこの効果の定式化を行ったイギリス物理学者ジョン・ヘンリー・ポインティングアメリカ数学者で物理学者のハワード・ロバートソンにちなんでいる[1]

太陽恒星の周囲を公転する塵粒子のうち、ポインティング・ロバートソン効果の影響を受ける程度に小さく、しかし恒星の輻射圧で吹き飛ばされるには大きすぎるものは、この効果によって恒星に向かってゆっくりと落下していく。太陽系の場合、この効果は直径1マイクロメートルから1ミリメートル程度の粒子が影響を受けると考えられている。より大きい粒子の場合、ポインティング・ロバートソン効果による影響を受けるよりもずっと早く別の物体と衝突してしまう可能性が高い。

ポインティングは1903年に初めてこの効果について記述したが、彼の記述はエーテル仮説に基づくものであった。エーテルを含んだ理論は、後の1905年から1915年にかけて相対性理論によって取って代わられた。その後1937年にロバートソンがこの効果を一般相対性理論の立場から記述した。

歴史

ロバートソンは、点源から放たれる放射の中での塵粒子の運動を考慮した。その後 A. W. Guess は球状の放射源のもとでの問題を考え、粒子が放射源から離れている場合は、結果的に粒子にはたらく力はポインティングによって得られた結論と一致することを発見した[2]

効果の起源

ポインティング・ロバートソン効果は、基準座標系の選び方によって2通りの方法で理解することができる。

恒星 (S) からの放射と粒子からの熱放射の模式図。(a) は粒子と共に運動する座標にいる観測者から見た場合、(b) は恒星に対して静止した座標系にいる観測者から見た場合の図。

恒星の周りを公転する粒子の立場から見た場合 (図の (a) で示されている状況)、恒星からの放射はわずかに前方からやってくるように見える (光行差)。そのためこの放射を吸収することで、粒子は輻射圧によって運動する方向とは逆向きの力を受けることになる。輻射は光速でやってくる一方で塵粒子の速度はそれより何桁も小さいものであるため、光行差の角度は極めて小さいものになる。

恒星の立場から見た場合 (図の (b) で示されている状況)、塵粒子は輻射を全て半径方向から、すなわち進行方向の真横から吸収することになるため、粒子の角運動量は輻射によって影響を受けない。しかし粒子からの光子の「再放射」は,(a) の座標系で見た場合は等方的であるが、(b) の恒星の座標系から見た場合は等方的ではなくなる。粒子からのこの異方的な放射によって、粒子から角運動量が持ち去られることになる。

ポインティング・ロバートソン効果は塵粒子の軌道運動とは逆の方向に働く実効的な力として解釈することができ、そのため粒子の角運動量は減少することとなる。角運動量が奪われることで粒子はゆっくりと恒星へ向けて落下していく一方で、軌道長半径が小さくなるため軌道速度は継続的に上昇する。

ポインティング・ロバートソン効果による力 FPRは、




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ポインティング・ロバートソン効果」の関連用語

ポインティング・ロバートソン効果のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ポインティング・ロバートソン効果のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのポインティング・ロバートソン効果 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS