隕石説の発展
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/08/09 00:59 UTC 版)
第二次世界大戦後、岩石学の発達に従って、温度と圧力を変化させた場合のシリカ鉱物 (SiO2) の安定関係が次第に明らかになってきた。常温常圧下ではα石英が安定だが、573度でβ石英に転移する。さらに温度を上げると、870度でトリディマイト、さらにクリストバライトとなり、融解に到る。温度ではなく圧力を上げていくと、500度から800度の場合は、3.5GPaでコーサイト(1953年に合成)に、10GPaでスティショバイト(1961年に合成)に転移することが分かった。 チャオ (E.C.T.Chao) らは、アメリカ合衆国アリゾナ州のバリンジャー・クレーターを調査し、まず1960年に天然のコーサイトを、1962年には天然のスティショバイトを発見した。ディーツは1960年、隕石の衝突によって生じた跡をアストロブレーム (astrobleme) と命名、これはギリシャ語の星と傷を合成した術語である。ディーツは月のクレーターと地球の隕石孔を比較、月のクレーターにはマグマがあふれた跡と思われるものが観測できることに対し、地球の隕石孔にはマグマの跡がないことに気づく。月と似た構造を地表で探すうちに、サドベリーに行き着く。 ディーツは1960年、サドベリー貫入岩体の外側、つまり、本来の地質構造を調べるうちに奇妙な構造を見つけた。1905年、ドイツのシュタインハイム・クレーターで最初に見つかったシャッターコーンである。シャッターコーンは数mmから数mに及ぶ岩石の内部に生じた円錐状の割れ目であり、これまで隕石孔でしか見つかっていない。ガイブレイ (J. Guy-Bray) の1966年の論文ではディーツの主張が補強され、サドベリー貫入岩体の周囲全域に渡って、さらに周囲にのみシャッターコーンの存在が確認された。シャッターコーンの分布は貫入岩体の縁から13kmの地点まで至っていた。シャッターコーンの円錐の軸は衝撃波が発生した地点を指し示す。ガイブレイは不完全ながら、円錐の軸の方向を調査、軸がサドベリー隕石孔の中心、現在の地表より高い地点を示すことを指摘している。 ディーツの説では、約17億年前に隕石がサドベリーに落下、直径45kmの隕石孔が出現したのと同時に衝突衝撃波によってシャッターコーンが形成された。落下の衝撃によりマグマが生成され、隕石孔を満たした。体積が大きいためにマグマの冷却速度は遅く、層状に分化した。硫化物に富んだ液にニッケルが溶け込み、ニッケルの比重(4から7)はケイ酸塩の比重3前後に比べて重いために下に沈んだ。こうして最外周部がニッケルに富むこととなった。 その後、海水が隕石孔に侵入し、衝突時の破砕物と合わせて堆積しホワイトウォーター層群 (1番目から3番目の層) が堆積した。最後に、カナダ盾状地の造山運動であるグレンヴィル造山運動により、約10億年前に南東から圧縮力を受け現在のような楕円形の形状を成したというものである。 ニッケルと銅の由来については、マグマの分化によって形成されたと考えられている。ディーツは一つの可能性として、落下した隕石がニッケルに富む鉄隕石であったと記している。 その後の研究によって、サドベリー火成複合岩体 (サドベリー貫入岩体) の組成はマントルとは異なり、下盤の岩石の混合したものに重なることが明らかとなった。また、地震波などの調査によってサドベリー火成複合岩体は地下でつながっているが、火山活動の給源岩脈が認められないことが判明した。現在ではサドベリー火成複合岩体は、ディーツの言うような衝突に誘発された火山活動のマグマではなく、衝撃融解物シートであると考えられている。ディーツが火山活動による凝灰岩としたホワイトウォーター層群のオナピン累層も、現在ではスーバイトとスーバイトが再堆積したものと解釈されている。
※この「隕石説の発展」の解説は、「サドベリー隕石孔」の解説の一部です。
「隕石説の発展」を含む「サドベリー隕石孔」の記事については、「サドベリー隕石孔」の概要を参照ください。
- 隕石説の発展のページへのリンク