金属イオンの役割
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/22 16:12 UTC 版)
グループIイントロン中の金属イオンの結合 グループIイントロンの内圏型(inner sphere)のマグネシウムの配位。2つの赤い球はマグネシウムイオン、イオンから伸びる破線はヌクレオチドの各官能基との配位を示している。緑=炭素、オレンジ=リン酸、赤=酸素、青=窒素。 外圏型(outer sphere)の配位を示す、グループIイントロンのP5c結合ポケット。ここでは、通常は水が行っている機能をオスミウムヘキサミン(III)の6つのアミンが果たしており、主溝とイオンの相互作用を媒介している。水素結合を介した配位が破線で示されており、オスミウムはピンクで示されている。他の色は上の図と同じである。 機能的なRNAは多くの場合、ふらふらとした直鎖ではなく、フォールディングした安定な三次元的形状を有する分子である。カチオンは、RNAの三次構造の熱力学的な安定化に必須である。RNAに結合する金属カチオンは、1価、2価、そして3価の場合もある。カリウム(K+)は、RNAに結合する最も一般的な1価イオンである。RNAに結合する一般的な2価イオンは、マグネシウム(Mg2+)である。ナトリウム(Na+)、カルシウム(Ca2+)、マンガン(Mn2+)など他のイオンもin vivoとin vitroでRNAに結合することが判明している。スペルミジンやスペルミンといった多価有機カチオンも細胞内に存在し、RNAのフォールディングに重要な寄与をしている。コバルトヘキサミンや、テルビウム(Tb3+)などのランタノイドイオンのような3価イオンは、RNAへの金属の結合を研究する有用な実験的ツールである。 金属イオンは複数の方法でRNAと相互作用する。あるイオンはRNAの主鎖と散在的な結合を行い、静電的相互作用を遮蔽する。この電荷遮蔽は多くの場合1価イオンによって行われる。一方、特定の部位に結合するイオンは、RNAの三次構造の特定のエレメントの安定化を行う。その相互作用は、金属結合を水分子が媒介するかどうかによって2つのカテゴリーにさらに分類される。外圏型(outer sphere)の相互作用は、金属イオンを囲む水分子によって媒介される。例えば、マグネシウム六水和物は特定のRNA三次構造モチーフの主鎖のグアノシンを介して相互作用し安定化する。逆に、内圏型(inner sphere)の相互作用は、直接金属イオンによって媒介される。RNAは多くの場合多段階のフォールディングを行い、その各段階は異なるタイプのカチオンによって安定化される。後期の段階はRNAの三次構造の形成を伴い、主にマグネシウムなどの2価イオンの結合によって安定化されるが、カリウムイオンの結合も寄与している可能性がある。 金属結合部位は多くの場合RNA二重らせんの深く狭い主溝に局在し、プリン塩基のフーグスティーンエッジ(フーグスティーン型塩基対を形成する側)に配位する。特に、金属カチオンは主鎖がねじれ、リン酸が密にパッキングし濃密な負電荷となる部位を安定化する。RNA二重らせん中の金属イオン結合モチーフがいくつか結晶構造中に同定されている。例えば、Tetrahymena thermophilaのグループIイントロンのP4-P6ドメイン中にはタンデムなG-Uゆらぎ塩基対とG-Aミスマッチからなるイオン結合部位がいくつか存在し、そこではグアノシンのフーグスティーンエッジのO6とN7を介して2価カチオンが相互作用する。テトラヒメナのグループIイントロン中の他のイオン結合モチーフとしてはA-Aプラットフォームモチーフがあり、RNAの同じ鎖中で連続したアデノシンが非典型的な擬似塩基対を形成する。タンデムG-Uモチーフとは異なり、A-Aプラットフォームモチーフは1価カチオンを好んで結合する。これらのモチーフの多くでは、1価または2価カチオンが存在しないときには構造の柔軟性が大きく増加するか、その三次構造を失う。 2価金属イオン、特にマグネシウムは、遺伝的組換えにおけるホリデイジャンクション中間体などのDNAジャンクション構造に重要であることが判明している。マグネシウムイオンはジャンクション中の負に帯電したリン酸基を遮蔽し、近接して配置されてスタッキングしたコンフォメーションを取ることを可能にする。マグネシウムは、double crossover motifなどDNAナノテクノロジーで利用される人工的にデザインされた構造中でのジャンクションの安定化にも重要である。
※この「金属イオンの役割」の解説は、「核酸の三次構造」の解説の一部です。
「金属イオンの役割」を含む「核酸の三次構造」の記事については、「核酸の三次構造」の概要を参照ください。
- 金属イオンの役割のページへのリンク