線型空間と位相空間
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/04/12 03:22 UTC 版)
「空間 (数学)」の記事における「線型空間と位相空間」の解説
二つの基本的な空間として、線型空間(ベクトル空間とも)と位相空間が挙げられる。 線型空間は代数学的な性質のものである。(実数全体の成す体上定義される)実線型空間、(複素数全体の成す体上で定義される)複素線型空間、あるいはもっと一般に任意の体上の線型空間などが考えられる。実数は複素数でもあるから、任意の複素線型空間は実線型空間でもある(後者は前者の台)。定義によって線型空間が与えられたとき、線型作用素は「直線」(および「平面」あるいは他の線型部分空間)、「平行線」、楕円(あるいは楕円体)などの概念を導く。しかし、「直交」(あるいは「垂直」)の概念を定義することはできないし、円を楕円の中の特別なものとして選び出すことなどはできない。線型空間の次元は線型独立なベクトルの数の最大値として、あるいは同じことだが空間全体を張るベクトルの数の最小値として定義される(それは有限かもしれないし無限かもしれない)。同じ体上の二つの線型空間が互いに同型となるための必要十分条件は、それらの次元が等しいことである。 位相空間は解析学的な性質を持つものである。定義により位相空間が与えられるとき、開集合を用いて連続函数・連続な道・連続写像、点列の収斂や極限、内部・境界・外部といったような概念を導くことができる。しかし、一様連続性、有界集合、コーシー列、可微分函数(滑らかな道、滑らかな写像)といったようなものは定義されない。位相空間の間の同型は慣習的に同相写像と呼ばれる、双方向に連続な一対一対応である。単位開区間 (0, 1) は実数直線全域 (−∞, ∞) に同相だが、単位閉区間 [0, 1] とも円とも同相でない。立方体の表面は(球体の表面である)球面に同相だが、トーラスとは同相でない。次元の異なるユークリッド空間が互いに同相でないことは、一見明らかなように思われるが、証明は容易でない。また、位相空間の次元は、定義するのが簡単でないが、帰納次元やルベーグ被覆次元がよく用いられる。位相空間の任意の部分集合はそれ自身位相空間になる(これは線型空間の「線型」部分空間のみがそれ自身線型空間となることと対照的である)。位相空間論(一般位相幾何あるいは点集合トポロジーなどとも呼ばれる)で研究される一般の位相空間は、(同相を除く)完全な分類を行うには広範すぎる対象であり、また一般には等質でない。コンパクト位相空間は位相空間(の「型」の「種」として)の重要なクラスである。コンパクト空間上の任意の連続函数は有界になる。単位閉区間 [0, 1] や拡大実数直線 [−∞, ∞] はコンパクトであり、単位開区間 (0, 1) や実数直線 (−∞, ∞) はコンパクトでない。幾何学的位相幾何学では(位相空間の「型」の別な「種」である)多様体が研究される。多様体は局所的にユークリッド空間に同相な位相空間である。低次元多様体の同相類は完全に分類されている。 上で述べた線型空間と位相空間という二つの構造はともに、位相線型空間構造の台となる構造である。つまり、位相線型空間は(実または複素)線型空間でも、(実は等質な)位相空間でもある。しかし、勝手な線型空間と位相空間の構造を組み合わせても、一般には位相線型空間は得られない。位相線型空間となるためには、二つの構造が両立する必要がある。つまり(線型空間としての構造を定める)線型演算が(その位相空間の構造において)連続でなければならない。 任意の(実または複素)有限次元線型空間は(それを位相線型空間とする位相がただ一つ存在するという意味で)線型位相空間と看做せる。従って、「(実または複素)有限次元線型空間」と「有限次元位相線型空間」という二つの構造は互いに同値である(つまり、互いに他の台構造と成り得る)。このことから、有限次元位相線型空間の任意の可逆線型変換は同相になる。しかし、無限次元の場合には、一般には異なる位相構造が与えられた線型構造と両立し得るし、従って一般には同相でない可逆線型変換が存在し得る。
※この「線型空間と位相空間」の解説は、「空間 (数学)」の解説の一部です。
「線型空間と位相空間」を含む「空間 (数学)」の記事については、「空間 (数学)」の概要を参照ください。
- 線型空間と位相空間のページへのリンク