実用化研究の現状
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/07/29 17:46 UTC 版)
実際に宇宙船の推力源として太陽帆を利用するためには、極めて軽量かつ極めて広い面積を保持できる薄膜鏡が必要であり、長らくは夢物語に過ぎなかった。初期にはアルミニウムの薄膜などが太陽帆の素材として候補になっていたが、あまりにも強度が不足しており、特に巨大な帆を宇宙空間で広げる際に帆を壊さずに広げる技術の開発が難しかった。しかし21世紀になって炭素繊維など素材の研究開発が進み、太陽帆に使用可能な、強度と軽さを兼ね備えた薄膜の作成に実現性が帯びてきた。 太陽帆の研究は、アメリカ航空宇宙局 (NASA) を始めとして、世界各国で行われている。最初に打ち上げられたのは、民間の国際NPO惑星協会による太陽帆の実証機コスモス1号で、同協会は2001年に試験機、2005年に実機を打ち上げたが、いずれも打ち上げ用ロケットのトラブルで衛星軌道に乗れず失敗した。惑星協会による実験はその後一時中断するが、2015年のライトセイル1号で帆の展開に、次いで2019年のライトセイル2号で遂に太陽帆の実証に成功した。 それに続くのが2008年に打ち上げられたのがNASAのナノセイルDだが、こちらもロケットのトラブルで打ち上げに失敗している。しかし2010年には代替機ナノセイルD2が打ち上げられ帆の展開に成功した。さらにNASAは2015年の打ち上げを目指し実証機サンジャマー(英語版)を計画する。これは大きさが37.8m、重量は約32kgと、後述のIKAROSと比べ面積が7倍で重量は1/10という大規模なものだったが、L'Garde社による開発が難航したため、プロジェクトはキャンセルされた。しかし2020年には今度は太陽帆を用いた小型探査機NEA Scout(英語版)が計画されている。 また日本でも、宇宙航空研究開発機構 (JAXA) の宇宙科学研究所により研究が行われている。2004年8月には太陽帆実現を目的とした、直径10m、厚さ7.5μmのポリイミドフィルム製の大型薄膜の宇宙空間での展開実験に成功した。また、太陽光圧の力だけでの推進・姿勢制御は難しいので、セイルに薄膜太陽電池をつけ、イオンエンジンとソーラーセイルを併用する「ソーラー電力セイル」構想が持ち上がった。2010年5月に打ち上げられた日本のソーラー電力セイル実証機IKAROSは、世界ではじめてソーラーセイルによる光子加速を実証し、同年12月8日には金星フライバイに成功するなど大きな成果を挙げた。 また直接の推進システムとしてではないが、2006年7月に小惑星探査機はやぶさ(第20号科学衛星MUSES-C)の運用にて、太陽光圧を利用した姿勢制御が行われ、その後継機はやぶさ2では通常の姿勢制御モードの1つとして利用されている。同様な姿勢制御用の光圧利用として、日本の運輸多目的衛星MTSATには姿勢制御用の太陽帆が搭載されている。 超小型のソーラーセイルとしては、イギリスがCubeSailを開発しており、2014年末にインドのロケットで打ち上げる計画。ソーラーセイルの大きさは25平方メートル(5メートル角)で、3UサイズのCubeSatを使用する。この試験は、ESAとDLRの共同プロジェクトであるGossamerに反映される予定。その他、同じくCubeSatを使った試験機であるが、ESAは電気式ソーラーセイルの試験を2014年秋からエストニアのESTCube-1を使って行っている。電気式ソーラーセイルは太陽光を推進力に使うのではなく、太陽風の粒子を電気的に捕えて推進力にするもので、長さ10mの導電性テザーESAILを展開する初期的な試験である。
※この「実用化研究の現状」の解説は、「太陽帆」の解説の一部です。
「実用化研究の現状」を含む「太陽帆」の記事については、「太陽帆」の概要を参照ください。
- 実用化研究の現状のページへのリンク