黄金時代以後
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/04/12 03:22 UTC 版)
ブルバキによれば、(モンジュの「画法幾何学」が公表される)1795年から(クラインのエルランゲン目録が示される)1872年までの期間は「幾何学の黄金時代」と呼ばれる。このころ解析幾何学は大いに発展して、古典幾何学の定理を変換群に関する不変量を通じた計算に置き換えることに成功しており、実際に古典幾何学の新たな定理が職業数学者よりもむしろアマチュアの手によって発見されている。 しかしこれは、古典幾何学の地位が失われたことを意味するものではない。ブルバキによれば、「自律し生きた科学としての役割は終えたが、古典幾何学は当代の数学の普遍的な言語へと姿を変えた」のである。 1854年、リーマンの有名な就任講演によれば、n 個の実数でパラメータ付けられた任意の数学的対象は、そのような対象全体の成す n-次元空間の点として扱うことができる。現代の数学者はこの考え方をごく普通に踏襲し、さらに強力に推し進めて古典幾何学の用語法をほとんどどこにでも用いる。 この手法の一般性を十分に理解するためには、数学というものが「数や、量あるいはそれらの描像の組み合わせではなく、思考の対象をこそ目的とする、純粋に形式の理論」であることに注意する必要がある。 函数は重要な数学的対象であり、普通は無限次元の空間を成す。このことは既にリーマンが指摘していたことであり、20世紀には函数解析学によって精緻化されている。 n-個の複素数によってパラメータ付けられる対象は、複素 n-次元空間の点として扱うことができるが、同じものを(複素数の実部と虚部を考えて)2n-個の実数によってパラメータ付けすることもできるから、実 2n-次元空間の点と考えることもできる。従って、複素次元は実次元とは異なる概念である。実は、これらは氷山の一角である。「代数的」な次元の概念は線型空間に対して適用することができるし、「位相的」な次元の概念は位相空間に対して考えることができる。また、距離空間に対するハウスドルフ次元の概念は、(特にフラクタルに対して)非整数値を取りうる。あるいは(測度空間などの)ある種の空間では、次元の概念を全く考えることができないこともある。 ユークリッドによって研究されていたような「空間」は、今日では「三次元ユークリッド空間」と呼ばれている。その公理化は紀元前3世紀のユークリッドに始まり、20世紀になってからヒルベルト、タルスキー、バーコフらによって完全に解決された。これは、いくつかの公理によって束縛された根源的な未定義術語(「点」、「の間に」、「合同」など)を通じて、空間を記述するやり方である(綜合幾何学)。このような「ゼロから組み立てられた」定義は、その空間と他の空間との関係が明らかではないので、現在はあまり用いられない。現代的な三次元ユークリッド空間の定義はもっと代数的に、線型空間と二次形式を通じて与えられる。すなわち、三次元内積空間から原点を忘れて得られるアフィン空間が三次元ユークリッド空間である。 三次元射影空間も現在では古典的な公理による定義ではなく、四次元線型空間の一次元部分空間(つまり原点を通る直線)の全体が成す空間として定義される。 現在では、空間というものは、点として扱われる選ばれた数学的対象(例えば、別な空間上の写像や別の空間の部分空間、あるいは単に集合の元など)と、それらの点の間の選ばれた関係とからなるものと理解される。すなわち、空間とは単に数学的構造であるに過ぎない。ある構造を「空間」と呼ぶときは、そうでない場合よりも幾何学的な扱いが期待されるものと考えることができるが、これは常に正しいというわけではない。例えば、可微分多様体(滑らかな多様体)は可測空間よりもかなり幾何学的な対象だが、これを可微分空間や滑らかな空間と呼ぶことはない。
※この「黄金時代以後」の解説は、「空間 (数学)」の解説の一部です。
「黄金時代以後」を含む「空間 (数学)」の記事については、「空間 (数学)」の概要を参照ください。
- 黄金時代以後のページへのリンク