現代の宇宙観測用の特殊な望遠鏡
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/08 07:24 UTC 版)
「望遠鏡」の記事における「現代の宇宙観測用の特殊な望遠鏡」の解説
19世紀末や20世紀初頭までは、人間の網膜に像を結び人間が知覚できる可視光線に関して、拡大した像をもたらすことを目的とした望遠鏡ばかりだったが、20世紀になって、宇宙観測に使うための、可視光線以外を扱う様々な特殊な観測装置や検出装置が開発されるようになった。それらの観測装置のことも光学望遠鏡とのアナロジーや比喩で、「望遠鏡」とも呼ばれることがある。それらは初期段階では素朴な装置で「像」といったものを提供するレベルではなく、どちらかと言えば(素朴な)「検出器」と呼ぶのがふさわしいものも多く、後になってようやく「像」らしい「像」を提供できるようになったものも多いが、一応この節でそれらの観測装置の登場の歴史についても軽く触れるが、あくまで軽く触れるにとどめる。詳細は個別の記事を参照のこと。 「天体観測」および「天文学」も参照 電波望遠鏡 詳細は「電波望遠鏡」を参照 人類の電磁波に関する理解や、それに関連する電子技術が向上したのは、さほど遠い昔のことではなく19世紀末や20世紀前半のことであるが、それによってようやく、従来の望遠鏡に加えて、電磁波をとらえて観測するための電波望遠鏡を設計・製作することが可能になったわけである。1932年に、宇宙空間から飛来する電波を捉える目的で作られた最初の電波アンテナ(最初の素朴な電波望遠鏡)がen:Karl Guthe Jansky(ベル研究所のエンジニア)によって使用された。これ以降 電波天文学が発展してゆくことになった。 X線望遠鏡 詳細は「X線望遠鏡」を参照 1963年にはBall Brothers Corporation社による初のX線望遠鏡が稼動し、その後X線天文学が発展してゆくことになった。 ニュートリノ検出器(ニュートリノ望遠鏡) 詳細は「ニュートリノ検出器」を参照 1965年ころには、独立した2つのグループがほとんど同時期に、地球に飛来するニュートリノの検出に成功。ひとつはen:Frederick Reinesの率いて南アフリカの金高山で実験を行ったグループ。もうひとつは、ボンベイ・大阪・ダーラムのチームが共同で行った研究で、インドのKolar Gold Field鉱山で行ったものであった。これ以降、ゆっくりとだがニュートリノ天文学が発展することになった。 紫外線望遠鏡 詳細は「紫外線望遠鏡」を参照 1978年から1996年にかけては、紫外線の観測ができる紫外線望遠鏡(en:ultraviolet telescope)のIUEが設計・製造・運用され、紫外線天文学が発展した。 重力波検出器(重力波望遠鏡) 重力波を検出する装置(「検出器」や「天文台」と呼ばれることのほうが一般的で、それらの呼称のほうが妥当だが、まれに「重力波望遠鏡」とも呼ばれるもの)に関して説明すると、2002年に米国のLIGO(ライゴ)が稼動し始めたが全く何も検出できず、2004年に拡張・改良を行ったがまともに作動しない時代が続いた。2015年9月に、5年の年月と2億ドルもの巨額の費用をかけたオーバーホールが完了し、(ようやく)科学的な観測が開始された。ヨーロッパのVirgo(バーゴ) は2003年に建造され、2017年にはLIGOとVirgoが連携する形でひとつの巨大な重力検出装置のように作動さる体勢が構築され、2017年8月17日、アメリカの2台の重力波検出器「Advanced LIGO」と欧州重力波観測所の重力波検出器「Advanced Virgo」が、連星中性子星が合体した際に生じた重力波が地球に届いたことを検知、その情報を即座に世界の天文台に伝え、全世界の天文台が、重力波にやや後れるようにして届く可視光線や他の放射線などを待ち受けるように観測して、合体が起きた場所・方角を正確に特定したり、さまざまなデータを得ることに貢献した。日本の重力波望遠鏡KAGRAもまもなく本格運用に入る予定で、これによって世界に3つ目の本格的な重力波望遠鏡が登場することで、重力波の源の方向の特定がより一層すみやかに、また正確になることが期待されている。
※この「現代の宇宙観測用の特殊な望遠鏡」の解説は、「望遠鏡」の解説の一部です。
「現代の宇宙観測用の特殊な望遠鏡」を含む「望遠鏡」の記事については、「望遠鏡」の概要を参照ください。
- 現代の宇宙観測用の特殊な望遠鏡のページへのリンク