具体的な群
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/08/01 22:33 UTC 版)
集合 {1, 2, ..., n} の上の置換(全単射)全体は、写像の合成を二項演算とし、単位元を恒等写像、逆元を逆写像とすることで群になる。この群を n 次の対称群といい、Sn と表記する。 整数、有理数、実数、複素数は全て加法に関してアーベル群を成す。 また有理数、実数、複素数から 0 を除いたものは乗法に関してアーベル群を成す. 四元数から 0 を除いたものは乗法に関して非可換群を成す。群を成す超複素数系は四元数までであり、結合法則を満たさない八元数は群を成さない。 (実数係数の)n 次正則行列全体の集合はどの行列も逆行列を持つから群になる。この群のことを GLn(R) と表し、n 次の実一般線型群と呼ぶ。さらに行列式が 1 であるという条件を課したものも群を成す。この群を SLn(R) と書き、n 次の実特殊線型群と呼ぶ。 n 次直交行列全体も群を成す。この群を On と書き、直交群と呼ぶ。これは、n 次元ユークリッド空間において、長さを変えないような変換全体の成す群である。直交行列の行列式は ±1 である。行列式が 1 であるような直交行列全体からなる群を SOn と書き、特殊直交群と呼ぶ。 複素数係数の行列に対しても同様な群が定義できる;その時、直交行列の類似物としてユニタリ行列を考える。直交群に対応するものはユニタリ群 Un であり、特殊直交群の類似物は特殊ユニタリ群 SUn になる。 正則行列による群の構成はベクトル空間の自己同型写像による群の構成の特別な場合だと見なすことができる。ベクトル空間 V 上の可逆線型変換全体 GL(V) は V のベクトル空間としての対称性を表していると考えられるが、これは V 上の一般線型群と呼ばれる。V に付加的な構造を与えることでその対称性は変わり、例えばベクトルの長さを定める計量を保つような線型同型写像を考えることで(考えている計量に付随した)直交変換群が得られる。 T を座標平面の原点を重心とする正三角形とする。平面全体の等長変換のうちで T を保つものには、恒等変換、原点に関する120度、240度の回転と各頂点と対辺の中点を結ぶ軸を対称軸とする折り返しの6つがある。これらによって T の対称性が表されていると考えることができる。これら6つの変換の成す群は3次対称群あるいは位数6の二面体群と呼ばれる群に同型になる。 楕円曲線は可換群の構造を持つことが知られている。 リー群(連続群) ガリレイ変換 ローレンツ群 空間群 結晶点群 磁気空間群(シュブニコフ群) 磁気点群 灰色群
※この「具体的な群」の解説は、「群 (数学)」の解説の一部です。
「具体的な群」を含む「群 (数学)」の記事については、「群 (数学)」の概要を参照ください。
- 具体的な群のページへのリンク