アーベル群
(可換群 から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/03/15 06:52 UTC 版)
![]() |
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。(2016年12月)
|
代数的構造 → 群論 群論 |
---|
![]() |
代数的構造 |
---|
数学、特に抽象代数学におけるアーベル群(アーベルぐん、英: abelian group[注釈 1])または可換群(かかんぐん、英: commutative group)とは、交換法則を有する群である。マグマの分類の一つである。名称は、ノルウェーの数学者ニールス・アーベルに因む[2][注釈 2]。
アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 Z 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。
一般に可換群は非可換群に比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。
定義
群に似た構造 | ||||
全域性 | 結合性 | 単位的 | 可逆的 | |
---|---|---|---|---|
群 | Yes | Yes | Yes | Yes |
モノイド | Yes | Yes | Yes | No |
半群 | Yes | Yes | No | No |
ループ | Yes | No | Yes | Yes |
準群 | Yes | No | No | Yes |
マグマ | Yes | No | No | No |
亜群 | No | Yes | Yes | Yes |
圏 | No | Yes | Yes | No |
集合 G に二項演算("*" と書くことにする)が定義されていて、以下の条件
- 結合法則:
可換群
- 可換群のページへのリンク