微分方程式 概要

微分方程式

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/05/22 01:54 UTC 版)

概要

微分方程式は方程式に含まれる導関数階数[注釈 1]によって分類され、最も高い階数が n 次である場合、その微分方程式を n 階微分方程式[注釈 2]と呼ぶ[1]

いずれの場合も未知関数は一つとは限らず、また、連立する複数の微分方程式を同時に満たす関数を解とするような連立方程式の形を取る場合もある[1]。これは連立 n 階微分方程式などと呼ばれる。

常微分方程式と偏微分方程式

一変数関数の導関数の関係式で書かれる常微分方程式と多変数関数の偏導関数を含む関係式で書かれる偏微分方程式に分かれる[1]

常微分方程式とは例えば、

や、

のような方程式である。

また、偏微分方程式は、

や、

のような格好をした方程式である。

代数的微分方程式

未知関数とその導関数の関係式が、未知関数や導関数を変数と見たときに解析関数を係数とする多項式である場合、代数的微分方程式と呼ばれる。

線形微分方程式

方程式が未知関数の一次式として書けるような方程式を線形微分方程式と呼ぶ。また、線型でない微分方程式は非線形微分方程式[注釈 3]と呼ばれる。 例えば、g(x)f(x) を含まない既知の関数とすれば、

線型微分方程式であり、

非線型微分方程式である。線型と呼ばれる理由は後述する線型斉次な方程式について、解の線型結合がその方程式の一般解をなすためである。

未知関数が 1 つの場合、高階の線型微分方程式を一階線型微分方程式の形に書き直すことができる。 たとえば、{gk} を既知関数の組として、以下の線型微分方程式が与えられたとき、

未知関数 f(x)k 階の導関数を yk(x) として (k = 0,..., n − 1)、以下の一組の微分方程式を得る。

この微分方程式は、より一般的に、ベクトル行列の記法を用いて

と書くことができる。ここで y は未知関数 y0,..., yn−1 を成分に持つベクトル、A は既知関数 {aij}i,j=0,...,n−1 を成分に持つ n × n の行列、b は既知関数 b0,..., bn−1 を成分に持つベクトルである。

斉次方程式と非斉次方程式

すべての項が未知関数を含むか 0 であるような線型微分方程式を線型斉次微分方程式[注釈 4]と呼び、斉次でない線形微分方程式は線型非斉次微分方程式[注釈 5]と呼ばれる。同じ意味の言葉として斉次方程式をしばしば同次方程式と呼ぶことがある。 例えば、

斉次な方程式であり、右辺に α を加えた、

非斉次な方程式である。

より一般の線形常微分方程式について、

右辺の関数 g0(x) がゼロならこの方程式は斉次である。 斉次方程式の特徴として、方程式の解 s(x) が得られたとき、その定数倍 cs(x) も方程式の解となる。また、斉次方程式の解の線形結合もその斉次方程式の解になる。

また、非斉次な方程式の解 sin(x) が得られたとき、元の方程式を斉次な形にしたときの解 shom(x) を用いて、非斉次方程式の新たな解 sin(x) + shom(x) を作ることができる。実際、

としたとき、sin(x), shom(x) はそれぞれ

を満たすので、sin(x) + shom(x) は元の方程式の解になっている。

確率微分方程式

方程式に含まれる既知関数が確率変数によって記述されるような微分方程式を確率微分方程式[注釈 6]と呼ぶ。確率常微分方程式や確率偏微分方程式はしばしば英語の頭文字を取って“SODE”, “SPDE”と略記される。代表的な例は物理学におけるランジュバン方程式や金融工学におけるブラック-ショールズ方程式がある。確率微分方程式の既知関数は、自身の期待値相関関数によって特徴付けられる。


注釈

  1. ^ : order
  2. ^ : nth order differential equation
  3. ^ : non-linear differential equation
  4. ^ : homogeneous linear differential equation
  5. ^ : inhomogeneous linear differential equation
  6. ^ : stochastic differential equation、SDE
  7. ^ この微分方程式の解として指数関数を定義する場合もある。その場合、y(0) = 1 となる解 y(x) を指数関数 exp(x) (≡ ex) とする。
  8. ^ この関係を示す際に、ラフな計算法として dy, dx を微小な数として扱うことがある。つまり、
    の両辺に dx/y を掛けて、
    とし、最後に積分記号 を添える。
  9. ^ 対数関数が指数関数の逆関数であることを利用する。exp(ln y) = y.
  10. ^ 解法: 一つの方法は次の自然対数の積分公式を利用する方法である。

    ある xy0 となるなら、

    方程式を満たす解 y0 である。次に y0 とならない解を探すと、 方程式は次のように変形できる。

    両辺を積分すれば、右辺は最初に示した積分と同じ形になる[注釈 8]

    両辺の積分を計算すると方程式の解は指数関数になることが分かる[注釈 9]

    その他の解法としては結局、指数関数か対数関数の定義に帰着させることになる。

  11. ^ 非自明な解を探しているので、任意の λ に対して f(x) = Cexp(λx) ≠ 0 である。従って、
    を満たす λ はすべて
    を満たす。
  12. ^ 解の形として f(x) = C(x)exp(λx) というものを仮定しても一般性は損なわれない。
  13. ^ a ≠ 0b ≠ 0 および αβ ≠ 0 は定数で、C1, C2積分定数

出典

  1. ^ a b c d e 長倉三郎ほか編、『岩波理化学辞典 Archived 2013年9月27日, at the Wayback Machine.』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6
  2. ^ a b 長島隆廣 『常微分方程式80余例とその厳密解』 近代文芸社、2005年 ISBN 4-7733-7282-6. 国立国会図書館蔵書, 請求記号:MA117-H55(東京 本館書庫)
  3. ^ 長島 隆廣[常微分方程式134例とその解]丸善出版サービスセンター,1982年5月発行,国立国会図書館・請求記号 MA117-111,全国書誌番号 82049441
  4. ^ 長島 隆廣『常微分方程式80余例と求積法による解法』2018年12月 researchmap で公開,全編PDF: https://researchmap.jp/T_Nagashima または,https://researchmap.jp/multidatabases/multidatabase_contents/detail/263160/16f8fddfba5ab789f6475ac2962bfd31?frame_id=539358


「微分方程式」の続きの解説一覧




微分方程式と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「微分方程式」の関連用語

微分方程式のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



微分方程式のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの微分方程式 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS