分子の形態
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/06/13 10:02 UTC 版)
分子にはおおよそ数百程度の分子量を持つものが多いが、サイズにすると10−9 m(ナノメートル)、10−20 gに相当する。この大きさでは可視光の波長以下の為、顕微鏡など光学的な像として個々の分子を観察することはできない。したがって通常目にする物質は結晶やクラスターなど集団としての分子を目にしていることになる。言い換えると分子の姿は測定器を介して観測するしかなく、分子の実像は目で見た物質の形態による想定とは必ずしも一致しない。 分子の構成単位は物質の種類により一定であるが、集合体としての分子の形態は同一物質であっても物質の物理的状態(三態)の変化によってもその形態は異なる。具体的には、共有結合性物質と、イオン性物質や物性としての金属では集団としての分子の意味合いは多少異なる。 共有結合性物質においては、気体、液体、固体のいずれの状態においても共有結合により組織付けられた分子が単位となっている。分子のポテンシャル表面を介して内側では斥力が、外側では引力が働く為、分子の単位で熱力学的な粒子として振舞っている。 一方、イオン性物質や金属は結晶やクラスターを単位としてみれば、電荷や表面ポテンシャルの面では巨大分子と考えられるが、(巨大)分子を構成する原子数が一定ではないという点で、共有結合性物質とでは集合体としての分子の意味合いが異なる。 例えば共有結合性単体であっても分子の形態はさまざまである。たとえば炭素はグラファイト、ダイヤモンド、カーボンナノチューブは原子数不定の巨大分子を形成する一方、フラーレン分子の原子数は一定である。窒素、フッ素は二原子分子で安定であるが、酸素は二原子あるいは三原子で安定な分子を形成する。硫黄は八原子分子が安定であり巨大分子(ゴム状硫黄)も形成する。このように分子の構成は成分の原子の性質によりさまざまに変化する。 炭素分子 二酸素分子(O2) オゾン(O3) 最外殻電子に欠員を持つ原子は、他の原子と化学結合を形成すると安定になる。そのため通常の条件下で単原子分子として存在する元素は、第18族元素に限られる。しかし宇宙空間など高度に希釈された条件下では、他の元素の単原子分子も存在しうる。 また、気体状態の酢酸分子の二量体を形成するなど物理化学的粒子と分子としての単位と合致しない状態もとり得る。 分子の単位質量は分子量であるが、分子量の大小により低分子あるいは高分子と区分されることがある。両者の境界はあいまいであるが、およそ分子量で103から104を境にしてそれ以下の分子を低分子、それ以上の分子を高分子と呼ぶ。高分子の代表としてはゴム、プラスチック、タンパク質、DNAなどがある。
※この「分子の形態」の解説は、「分子」の解説の一部です。
「分子の形態」を含む「分子」の記事については、「分子」の概要を参照ください。
- 分子の形態のページへのリンク