マクスウェルの方程式
![]() | この記事には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。 |
マクスウェルの方程式(マクスウェルのほうていしき、英: Maxwell's equations、マクスウェル方程式とも)は、電磁場を記述する古典電磁気学の基礎方程式。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則を、1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理した[1]。
日本語ではマクスウェルの名前の表記揺れによりマックスウェルの方程式とも表記される。また、マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれる。
それまでの知られていた法則がマクスウェルの方程式として整理されたことから、電場と磁場の統一(電磁場)、光が電磁波であることなどが導かれた。
また、アインシュタインは特殊相対性理論の起源はマクスウェルの電磁場方程式である旨を明言している。
マクスウェルが導出した当初の方程式はベクトルの各成分をあたかも互いに独立な量であるかのように別々の文字で表して書かれており、現代の洗練された形式ではなかった。ヘヴィサイドは1884年にベクトル解析の記法を用いて書き直した。現在ではヘヴィサイトによる形により知られている。また、ヘヴィサイトは電磁ポテンシャルを消去出来ることも示したが、その意義は直ちには認めらなかった。
ベクトル記法が一般化し始めるのは 1890年代半ばであって、ヘルツの論文ではまだそれを使っていない。いずれにせよ、このベクトル解析の記法の採用は場における様々な対称性を一目で見ることを可能にし、物理現象の理解に大いに役立った[2]。
真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。
電磁気学の単位系は国際単位系のほかガウス単位系などがあり、マクスウェルの方程式における係数は単位系によって異なる。以下では原則として国際単位系を用いる。
4つの方程式

アンペール-マクスウェルの式
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/12 03:23 UTC 版)
「マクスウェルの方程式」の記事における「アンペール-マクスウェルの式」の解説
∇ × H = j + ∂ D ∂ t {\displaystyle \nabla \times {\boldsymbol {H}}={\boldsymbol {j}}+{\frac {\partial {\boldsymbol {D}}}{\partial t}}} (微分形のアンペール-マクスウェルの式) 積分形は次のようになる。 ∮ C H ⋅ d l = ∫ S j + ∂ D ∂ t ⋅ d S {\displaystyle \oint _{C}{\boldsymbol {H}}\cdot \mathrm {d} {\boldsymbol {l}}=\int _{S}{\boldsymbol {j}}+{\frac {\partial {\boldsymbol {D}}}{\partial t}}\cdot \mathrm {d} {\boldsymbol {S}}} C は曲面 S の縁となる閉曲線である。 右辺の第2項は変位電流項と呼ばれる。変位電流は媒質が普通の金属ならばまず無視できる。電場の変動の角周波数 ω が電気伝導度 σ と誘電率 ε の比より十分小さければよい。普通の金属の電気伝導度は σ 〜 107 S/m 程度で、誘電率は真空とさほど変わらない ε 〜 10−11 F/mから ω ≪ σ ε ∼ 10 18 s − 1 {\displaystyle \omega \ll {\frac {\sigma }{\varepsilon }}\ \sim \ 10^{18}\ {\text{s}}^{-1}} となり、ω がTHz単位でも条件を満たしている。 変位電流が無視できるような電流を準定常電流という。
※この「アンペール-マクスウェルの式」の解説は、「マクスウェルの方程式」の解説の一部です。
「アンペール-マクスウェルの式」を含む「マクスウェルの方程式」の記事については、「マクスウェルの方程式」の概要を参照ください。
- アンペール-マクスウェルの式のページへのリンク