エネルギー生成
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/01/06 21:21 UTC 版)
「陽子-陽子連鎖反応」の記事における「エネルギー生成」の解説
この連鎖反応で最終的に作られるヘリウム4原子核の質量を陽子4個の質量と比べると、元々陽子が持っていた質量の約0.7%が失われていることが分かる。この質量はエネルギーに変換され、個々の反応の過程でガンマ線とニュートリノの形で放出されている。 こうして生成されたエネルギーのうち、ガンマ線として放出されたエネルギーだけが電子や陽子と相互作用をして太陽内部を加熱する。この熱エネルギーによるガスの熱運動が自己重力による収縮に拮抗し、太陽の形が保たれている。一方、この反応で放出されるニュートリノは物質とほとんど相互作用をしないため、太陽を重力収縮に抗して支える役割には寄与しない。
※この「エネルギー生成」の解説は、「陽子-陽子連鎖反応」の解説の一部です。
「エネルギー生成」を含む「陽子-陽子連鎖反応」の記事については、「陽子-陽子連鎖反応」の概要を参照ください。
エネルギー生成
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/09/13 15:04 UTC 版)
「恒星内元素合成」も参照 全ての主系列星は、核融合によってエネルギーを生み出している核の領域を持つ。この核の温度と密度は、核より外側の部分を支えるためのエネルギー生成を維持するのに充分な水準になっている。エネルギー生成が減少した場合、核の外側にある質量によって核が圧縮されて核の温度と密度が上昇するため、結果として核融合によるエネルギー生成率は上昇する。同様にエネルギー生成が上昇した場合は恒星が膨張するため核での温度と圧力は低下し、エネルギー生成率は減少する。従って、恒星はその主系列の寿命の間にわたって安定な、静水圧平衡の自己調節系として成立している。 主系列星では2種類の水素核融合過程が発生し、それぞれの過程のエネルギー生成率は核領域の温度に依存する。天文学者はこの2つの核融合過程のどちらが支配的であるかによって、主系列を上部と下部の2つに分割している。主系列の下部にあたる恒星内部では、エネルギーは主に陽子-陽子連鎖反応によって生成されており、この過程では連鎖的な反応によって直接水素からヘリウムが合成される。主系列の上部に当たる恒星内部では、核の温度がCNOサイクルを起こすのに十分な温度となる。この過程では水素からヘリウムを合成する反応の中間段階において、炭素、窒素、酸素原子が使われる。 核の温度が1800万Kになると、陽子-陽子連鎖反応とCNOサイクルのエネルギー生成率が等しくなり、両方の過程は恒星の全体の光度のそれぞれ半分のエネルギーを生成するようになる。この核の温度が実現されるのは恒星の質量が1.5太陽質量程度の時であり、主系列の上部はこの質量より大きい恒星から成っている。従って大まかに分類すると、スペクトル分類が F かそれよりも低温な恒星は主系列の下部に属し、A かそれよりも高温な恒星は上部に属する。エネルギー生成過程が遷移する恒星質量の幅は、1太陽質量よりも狭い範囲である。太陽の場合、CNOサイクルによって生成されるエネルギーはわずか 1.5% である。対照的に、1.8太陽質量以上の質量を持つ恒星では生成されるエネルギーのほとんど全てがCNOサイクルによって生成される。 主系列星の質量の観測的な上限値は 120〜200太陽質量である。この上限質量に対する理論的な説明は、この質量より大きい恒星は安定を保つための急速なエネルギー放射を行うことが出来ず、安定な限界質量に到達するまでの一連の脈動の最中に質量を外部に放出してしまうというものである。一方、陽子-陽子連鎖反応を維持するための下限質量は0.08太陽質量 (木星質量のおよそ80倍) である。この質量の閾値を下回る天体は水素核融合を維持することが出来ない亜恒星天体であり、褐色矮星として知られている。
※この「エネルギー生成」の解説は、「主系列星」の解説の一部です。
「エネルギー生成」を含む「主系列星」の記事については、「主系列星」の概要を参照ください。
エネルギー生成
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/15 16:05 UTC 版)
CNOサイクルでは1サイクルごとに約25MeVのエネルギーが生成される。CNOサイクルの1サイクルが完結するまでの時間は約 3.8 × 108 年で、陽子-陽子連鎖反応の時間尺度(約109年)よりも短い。このため、CNO サイクルを主なエネルギー源とする大質量星では単位時間当たりのエネルギー生成率が小質量星よりも大きい。 また、CNOサイクルは温度に非常に敏感な反応である。CNOサイクルのエネルギー生成率は温度の15乗に比例する。従って温度が5%上昇するとエネルギーの放出は約2.08倍に増加する。
※この「エネルギー生成」の解説は、「CNOサイクル」の解説の一部です。
「エネルギー生成」を含む「CNOサイクル」の記事については、「CNOサイクル」の概要を参照ください。
- エネルギー生成のページへのリンク