平均値の定理とは? わかりやすく解説

平均値の定理

(第二平均値定理 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/06/08 23:00 UTC 版)

[a, b] で連続かつ (a, b) で微分可能な関数に対して、平均変化率に等しい傾きを持つ接線を与える点 c が (a, b) 内に存在する。

微分積分学における平均値の定理(へいきんちのていり、: mean-value theorem)または有限増分の定理 (: Théorème des accroissements finis[注釈 1]) は、実函数に対して有界な領域上の積分に関わる大域的な値を、微分によって定まる局所的な値として実現する点が領域内に存在することを主張する。平均値の定理にはいくつかバリエーションがあるが、単に 「平均値の定理」 と言った場合は、ラグランジュの平均値の定理と呼ばれる微分に関する平均値の定理のことを指す場合が多い。

平均値の定理は微積分学の他の定理の証明(例えば、テイラーの定理微分積分学の基本定理)にしばしば利用される、大変有用なものである。平均値の定理の証明自体にはロルの定理を用いる。その一方で、平均値の定理はそのまま多変数の関数に適用することはできない。また、もっと弱い条件の元でも同じ定理が成り立つ。その他種々の理由から、平均値の定理を使うこと避ける数学者もいる。多変数関数にも使えて、平均値の定理の代わりになるような定理として、有限増分不等式がある。これは存在型ではない。あるいは、積分を持ち込んで微積分学の基本定理で代用することもある。

歴史

平均値の定理の特別の場合について、最古の記述はインドのケーララ学派Parameshvara (1370–1460) によるGovindasvāmiおよびバースカラ2世に関する解説の中に見られる[1]。制限された形の平均値定理は、1691年にミシェル・ロルが今日ロルの定理と呼ばれるものを、多項式に限って、微分積分学の手法を用いることなく示した。現代的な形の平均値定理を定式化し証明したのはオーギュスタン・ルイ・コーシーで、1823年のことである[2]

微分の平均値定理

有限増分の定理

有限増分の定理と呼ばれる定理にもいくつか異なるバージョンがあり、後で述べる平均値の定理の別名でしかない場合もある[3]

弱い有限増分の定理
函数 f は閉区間 [a, b] 上で有限かつ連続、開区間 (a, b) で微分可能であるとき、 この項目は、自然科学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めていますPortal:自然科学)。




固有名詞の分類


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「平均値の定理」の関連用語

平均値の定理のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



平均値の定理のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの平均値の定理 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS