生物医学研究への応用例
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/25 07:46 UTC 版)
「Folding@home」の記事における「生物医学研究への応用例」の解説
タンパク質の誤った折り畳み(ミスフォールディング)は、アルツハイマー病、癌(がん)、クロイツフェルト・ヤコブ病、嚢胞性線維症、ハンチントン病、鎌状赤血球性貧血、およびII型糖尿病を含む様々な疾患の原因となり得る。 HIVやインフルエンザなどのウイルスによる細胞感染には、細胞膜上でのタンパク質のフォールディング現象も関与している。 タンパク質のミスフォールディングがよりよく理解されれば、タンパク質のフォールディングを調節する細胞の自然な能力を増強する治療法を開発することができる。 このような治療法には、特定のタンパク質の産生を変化させたり、ミスフォールディングしたタンパク質を破壊したり、あるいはフォールディングプロセスを補助するために人工分子を使用することが含まれる。 計算分子モデリングと実験解析の組み合わせは、創薬の迅速化やコスト削減など、分子医学の未来と合理的な医薬品設計法を根本的に形作る可能性を秘めている。 Folding@homeの最初の5年間の目標は、フォールディングの理解を前進させることであったが、現在の目標は、ミスフォールディングと関連疾患、特にアルツハイマー病の理解である。 Folding@home上で実行されるシミュレーションは、実験室での実験と併用されるが、研究者はこれらのシミュレーションを利用して、実験室環境(in vitro)でのフォールディングが、本来の細胞環境でのフォールディングとどのように異なるのかを研究することができる。 これは、実験的に観察することが困難なフォールディングやミスフォールディング、そしてそれらと疾患との関係を研究する上で有利である。 例えば、2011年のFolding@homeでは、リボソーム出口トンネル内でのタンパク質のフォールディングをシミュレーションし、自然の閉じ込めや混雑がフォールディングプロセスにどのような影響を与えるかを、科学者が理解するのに役立てた。 さらに、科学者は通常、化学的変性剤を働かせ、タンパク質を安定なネイティブ状態からアンフォールド(展開)させている。 変性剤がタンパク質の再フォールディングにどのような影響を与えるかは一般的には知られておらず、これらの変性状態に、フォールディングの挙動に影響を与える可能性のある残余構造が含まれるかどうかを実験的に判断することは困難である。 2010年にFolding@homeは、GPUを使ってプロテインL(英語版)の未フォールディング状態をシミュレーションし、実験結果と強く一致する崩壊速度を推定した。 このプロジェクトから得られた大規模なデータセットは、要求に応じて他の研究者が自由に利用できるようになっており、Folding@homeのウェブサイトからアクセスできるものもある。 パンデ研究室は、Blue Geneスーパーコンピュータのような他の分子動力学システムと協力しており、Folding@homeの主要なソフトウェアを他の研究者と共有していて、Folding@homeの恩恵を受けたアルゴリズムが他の科学分野に役立つ可能性がある。 2011年には、Folding@homeのMSMやその他の並列化手法をベースに、大規模なコンピュータクラスタやスーパーコンピュータ上での分子シミュレーションの効率とスケーリングを向上させることを目的としたオープンソースのCopernicusソフトウェアをリリースした。 Folding@homeで得られたすべての科学的知見の要約は、発表後にFolding@homeのウェブサイトに掲載される。
※この「生物医学研究への応用例」の解説は、「Folding@home」の解説の一部です。
「生物医学研究への応用例」を含む「Folding@home」の記事については、「Folding@home」の概要を参照ください。
- 生物医学研究への応用例のページへのリンク