燃料電池への供給
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/04/29 08:37 UTC 版)
液体炭化水素の水蒸気改質は燃料電池へ燃料を供給できる方法であると考えられている。基本的な考えは例えば、メタノールタンクと水蒸気改質ユニットが、大きな高圧水素タンクに取って代わるだろうということだ。これは水素自動車に付随する航続距離と燃料流通の問題を緩和するかもしれない。 発電へのこのアプローチはいくつかの利益をもたらす。 水蒸気改質は化石ベースの燃料以外に、バイオエタノールやバイオディーゼルのようなCO2ニュートラルな液体炭化水素燃料を利用できるため、グリーンな水素を製造することができる。 小規模な改質装置はガソリンスタンドを水素ステーションに転換するような現在の炭化水素インフラの転換がなくても比較的低コストで流通させることができる。 燃料電池と接合させた時、そのような燃料供給所は自動車の燃料補給のための水素供給に加えて、近隣に非常用電源を提供することができる。 また、この技術に関連したいくつかの課題がある。 改質反応は高温で起こるため、温度が上がるまでに時間がかかり、始動が遅くなる。また、高温に耐えうる材料を必要とする。 燃料中に存在する硫黄化合物はある種の触媒を汚染するため、普通のガソリンシステムからこのタイプのシステムを運用しにくくしている。いくつかの新しい技術は硫黄への耐性のある触媒を用いることでこの課題を乗り越えた。 多くの燃料電池は硫黄に被毒するため、どのみちppbオーダの脱硫が必要になる。 反応装置から生成される一酸化炭素は燃料電池を汚染するため、複雑な一酸化炭素除去装置の組み込みが必要になる。 反応過程の熱量効率は水素製造の純粋さによって70 - 85 %LHVの間である。 コストと耐久性の点から見ると、改質装置をベースにしたシステムにとっての最も大きな問題は燃料電池自身に残っている。透過の役割に使用されるであろう装置である高分子電解質膜燃料電池の中に使われている触媒の白金は、燃料中の改質装置では完全に取り除くことができない一酸化炭素にも非常に敏感である。膜は一酸化炭素によって汚染され、性能が低下する。 触媒は非常に高価である。 ただし、SOFC(固体酸化物燃料電池)の場合、高価な白金触媒が不要であったり、一酸化炭素も燃料として用いることができるなど、燃料電池側の対策で多くの問題を解決できる。 これらの課題を抱えていても、改質 - 燃料電池システムは将来、電気自動車や家庭、ビジネスで利用するシステムとして未だに研究されている。理想的なシステムは、天然ガスやガソリン、軽油のような既存の燃料で動くことができるシステムであるが、長い目で見るとバイオエタノールやバイオディーゼルのような再生可能な液体燃料が望ましい。全体的に見て、水素燃料を作り、輸送し、保管するコストが一番の問題である。
※この「燃料電池への供給」の解説は、「水蒸気改質」の解説の一部です。
「燃料電池への供給」を含む「水蒸気改質」の記事については、「水蒸気改質」の概要を参照ください。
- 燃料電池への供給のページへのリンク