フォン・ノイマン=ベルナイス=ゲーデル集合論
(ノイマン=ベルナイス=ゲーデル集合論 から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/06/19 14:25 UTC 版)
数学基礎論において、フォン・ノイマン=ベルナイス=ゲーデル集合論 (NBG) とはツェルメロ=フレンケル集合論+選択公理 (ZFC)の保存拡大である公理的集合論である。NBGでは、量化子の範囲を集合に限定した論理式によって定義される集合の集まりとして、クラスの概念を導入する。NBGは、すべての集合というクラスやすべての順序数というクラスといった、集合よりも大きいクラスを定義できる。モース=ケリー集合論 (MK) は量化子の範囲がクラスである論理式によるクラスの定義を許容する。NBGは有限公理化できる一方、ZFCやMKではできない。
NBGのキーとなる定理はクラスの存在定理である。クラスの存在定理は、量化子の範囲を集合に限定した論理式それぞれに対して、論理式を満たす集合からなるクラスの存在を述べる。クラスは、クラスの論理式を一つずつ構築することで構成される。すべての集合論的な論理式は2種類の原子論理式(所属関係と等式)と有限個の論理記号から構築されるため、論理式を満足するクラスを構築するには有限個の公理があればよい。NBGが有限公理化できるのは、こうした理由による。クラスは他の概念の構築にも用いられ、集合論的パラドックスへの対処や、ZFCの選択公理より強い大域選択公理の説明に用いられる。
ジョン・フォン・ノイマンは1925年に集合論にクラスを導入した。彼の理論の原始概念は関数と引数であった。これらの概念を用いて、フォン・ノイマンはクラスと集合を定義した。[1] パウル・ベルナイスはクラスと集合を原始概念とすることで、フォン・ノイマンの理論を再定式化した。[2] クルト・ゲーデルは、選択公理の相対的無矛盾性の証明と一般連続体仮説を用いてベルナイスの理論を単純化した。[3]
集合論におけるクラス
クラスの使用例
NBGにおいてクラスはいくつかの使用例がある:
- クラスによって集合論を有限公理化する。[4]
- "非常に強い形の選択公理"を表現するのに用いられる。[5]—すなわち、大域選択公理のことである。大域選択公理の内容は以下の通り:すべての空でない集合
NBG 集合論を導いた手法の変遷 フォン・ノイマンの1925年の公理系
フォン・ノイマンは自身の公理系に関する入門的な論文を1925年に発行した。1928年、彼は公理系の詳細な説明を与えた。[39] フォン・ノイマンの公理系は、関数と引数という原始概念の 2 領域に基づく。これらの領域は重複する—両方の領域に属するものは引数関数と呼ばれる。関数が NBG におけるクラスに対応し、引数関数が集合に対応する。フォン・ノイマンの原始的演算は、a(x) ではなく [a, x] で表される関数適用である。ここで a は関数、 x は引数を表す。この演算から引数が生成される。フォン・ノイマンはクラスと集合を、A と B の2値の引数関数を使って定義した。また、 [a, x] ≠ A ならば x ∈ a であると定義した。[1]
集合論におけるフォン・ノイマンの仕事はゲオルグ・カントールの論文やエルンスト・ツェルメロの1908年の集合論公理、アドルフ・フレンケルとトアルフ・スコーレムによって独立に発表された1922年のツェルメロ集合論への批評によって広められた。 フレンケルとスコーレムはいずれも、ツェルメロの公理は集合 {Z0, Z1, Z2, ...} の存在を証明できないと指摘していた。ここで、 Z0 は自然数の集合であり、 Zn+1 は Zn の冪集合である。そして彼らはそのような集合の存在を保証する置換公理を導入した。[40][注釈 14] しかし、彼らはこの公理を適用しようとは思わなかった:フレンケルは「置換公理は『一般集合論』には強すぎる」とする一方、「スコーレムだけは置換公理を『導入できうる』と書いていた」と述べている。[42]
フォン・ノイマンはツェルメロ集合論の問題点に対処し、解決策を与えた:
- 順序数の理論
- 集合としては大きすぎるクラスを特定する基準
- 問題点:ツェルメロはそのような基準を示していなかった。ツェルメロ集合論では、パラドックスを引き起こす大きなクラスが排除されていたが、フレンケルとスコーレムが指摘したような、多くの集合が除外されていた。[注釈 17]
- 解決策:フォン・ノイマンは基準を導入した:クラスが集合として大きすぎるのは、クラスからすべての集合のクラス V への全射が存在するときで、かつそのときに限る。フォン・ノイマンはこのような大きなクラスを元に持つ任意のクラスを許可しないことで、集合論的パラドックスを回避できることを知っていた。この制限と彼の基準を組み合わせることで、サイズ制限公理を得た: クラス C はどのクラスの元でもないのは、 C から V への全射が存在するとき、またそのときに限る。[48][注釈 18]
- 有限公理化
- 問題点:ツェルメロは彼の分出公理において、「定値命題関数」の不正確な概念を用いていた。
- 解決策:スコーレムはのちに ZFC で用いられる分出公理図式を導入し、フレンケルは等価な解決策を用いた。[50] しかし、ツェルメロは「彼自身の観点では、集合論の土台となる自然数の概念をも暗に巻き込む部分があるため」いずれの方法も拒否した。[注釈 19] フォン・ノイマンは「定値命題関数」の概念を有限個の公理から構築できる関数で定式化することにより、公理図式を除外した。これによって、フォン・ノイマンの理論は有限公理化できるようになった。[51] 1961年、リチャード・モンタギューは ZFC が有限公理化できないことを証明した。[52]
- 正則性公理
- 問題点:ツェルメロ集合論は空集合と無限集合から議論を始め、対の公理の反復、和集合、冪集合、分出公理、選択公理によって新たな集合を得る。しかし、この集合論では集合をこれらの形に制限していない。例えば、集合 x が x ∈ x を満たすような、整礎でない集合の存在が許容される。[注釈 20]
- 解決策:フレンケルはこうした集合を除外するために公理を導入した。フォン・ノイマンはフレンケルの公理を分析し、「厳密な定式化」がなされていないと大雑把に指摘した:「集合に加えて ... その存在は公理に対して絶対必要になる、これ以上に集合はなく。」[54] フォン・ノイマンは正則性公理を整楚でない集合を除外する方法として提案したが、ツェルメロ公理系には取り入れられなかった。1930年になって初めて、ツェルメロは正則性公理を取り入れた公理系を発表した。[注釈 21]
フォン・ノイマンの1929年の公理系
ジョン・フォン・ノイマン 1929年、フォン・ノイマンは NBG につながる公理を含む論文を発表した。この論文はサイズ制限公理の無矛盾性に対する懸念がきっかけだった。この公理をフォン・ノイマンは「たくさん、実際には多すぎる」と述べている。また、分出公理と置換公理は整列可能定理を含意するほか、濃度が V より小さいどのクラスも集合であることをも含意する。フォン・ノイマンは後者について、カントール集合論を越えたと考え、以下のように結論づけた:「ゆえに(公理の)無矛盾性は、それが問題にならないかだけではなく、必須となるカントールのフレームワークを越えない集合論の公理化となるかを議論しなければならない。」[57]
フォン・ノイマンは無矛盾性の調査を1929年の公理系を導入することで始めた。この公理系はサイズ制限公理以外は1925年の公理系すべてを含む。彼は、サイズ制限公理は、そこから得られる 2 つの結果である、置換公理と選択公理に置き換えた。フォン・ノイマンの選択公理は以下の通り:「どの関係 R も、 R と同じ定義域の写像を部分クラスとしてもつ。」[58]
S をフォン・ノイマンの1929年の公理系とする。フォン・ノイマンは公理系 S + Regularity (S と正則性公理からなる)を導入し、自身の1925年の公理系が S と相対的に無矛盾であることを示した。また、以下を証明した:
- S が無矛盾であれば、 S + Regularity は無矛盾である。
- S + Regularity はサイズ制限公理を含意する。これは1925年の公理系のうち S + Regularity にない唯一のものであるため、 S + Regularity は自身の1925年の公理系の公理すべてを含意する。
これらの結果は以下の内容を含意する: S が無矛盾であれば、フォン・ノイマンの1925年の公理系は無矛盾である。証明: S が無矛盾であれば、 S + Regularity は無矛盾である(結果 1)。背理法を用いて、1925年の公理系が矛盾である、つまり1925年の公理系が矛盾を含意すると仮定する。 S + Regularity は1925年の公理系を含意する(結果 2)ので、 S + Regularity も矛盾を含意する。しかし、これは S + Regularity の無矛盾性に反する。したがって、 S が無矛盾であれば、フォン・ノイマンの1925年の公理系も無矛盾である。
S は彼の1929年の公理系であるので、フォン・ノイマンの1925年の公理系は(カントール集合論に近い)1929年のものと相対的に無矛盾である。カントール集合論と1929年の公理系の大きな違いは、クラスとフォン・ノイマンの選択公理である。公理系 S + Regularity はベルナイスとゲーデルによって修正され、NBG と等価な公理系となっていった。
ベルナイスの公理系
パウル・ベルナイス 1929年、パウル・ベルナイスはフォン・ノイマンの新しい公理系を、クラスと集合を原始概念とすることで修正し始めた。ベルナイスは自身の仕事を 1937年から1954年にかけて、一連の論文として発表した。[59] ベルナイスは以下のように述べている:
フォン・ノイマンの公理系を修正する目的は、元のツェルメロ公理系の構造に近いまま維持するほか、論理学者に馴染みのあるシュレーダー論理とプリンキピア・マテマティカの集合論的概念を同時に活用するためである。見ての通り、この仕事によって、注目すべき簡略化ができた。[60]ベルナイスは集合とクラスを2-ソート論理で扱い、2 つの原始的帰属概念を導入した:一つは集合の関係で、もう一つはクラスの関係である。これらの原始概念によって、ベルナイスはフォン・ノイマンの1929年の公理系を簡略化した。ベルナイスはまた、その公理系に正則性公理を導入した。[61]
ゲーデルの公理系 (NBG)
クルト・ゲーデル、1926年頃 1931年、ベルナイスは自身の集合論に関してクルト・ゲーデルに手紙を送った。ゲーデルはベルナイスの理論を、集合をすべてクラスで置き換え、1ソートで1つの原始概念(帰属関係)からなる理論に簡略化した。ゲーデルはまた、ベルナイスの公理のいくつかを弱め、フォン・ノイマンの選択公理を大域選択公理と等価なものに置き換えた。[62][注釈 22] ゲーデルは、1940年の大域選択と一般連続体仮説の相対的無矛盾性に関するモノグラフの中で、自身の公理系を使った。[63]
ゲーデルが自身のモノグラフの中で NBG を用いた理由はいくつか考えられる:[注釈 23]
- ゲーデルは数学的理由を与えた—NBGの大域選択公理から、より強い無矛盾な定理が導かれる:「この強い形式の(選択)公理は、他の公理に対して無矛盾であれば、当然弱い形式についての無矛盾性を含意する。」[5]
- ロバート・ソロヴェイは以下のように予想した:「私が思うに、彼(ゲーデル)は公理的集合論内でモデル理論の基本を発展させることに関連する、細部の議論を避けたかった。」[67][注釈 24]
- ケネス・キューネンはゲーデルが議論を避けた理由を以下のように考えている:「L (構成可能集合)に関する組み合わせ論的アプローチもたくさんある、例えば ... (1940年のモノローグの中でゲーデルは)論理学者以外に説明することを試みていた。 ... このアプローチは L を扱う際に、論理の痕跡を残さないというメリットがある。」[68]
- チャールズ・パーソンズ (Charles Prsons) はゲーデルの選択に哲学的理由を考えた:「この(「集合の特徴」が集合論の原始概念であるという)見方は、ゲーデルの(モノグラフのように)クラス変数をフレームワークとする理論の選択に反映されているかもしれない。」[69]
ゲーデルの成果と詳細な説明により、その後20年間にわたって NBG が発展した。[70] 1963年、ゲーデルの作り上げたNBGの無矛盾性証明を援用して、ポール・コーエンはZFの独立性を証明した。[71] その後、 ZFC が NBG よりも一般的になった。これにはいくつかの要因があり、その一つは NBG において強制法を扱うには追加の仕事が必要だったためである。[72] これに関するコーエンの1966年の強制法の発表では、ZFが用いられた。[73][注釈 25] 他の要因としては、NBG が ZFC の保存拡大であることが証明されたからである。[注釈 26]
NBG, ZFC, MK
NBG は論理的に ZFC と等価ではない。なぜなら、NBG の言葉は表現的であるからである。NBG ではクラスに関して表現できる一方、ZFC ではできない。しかし集合に関しては、 NBG も ZFC で同じ内容の表現を含意する。したがって、NBG は ZFC の保存拡大である。 NBG は ZFC が含意しない定理を含意するが、 NBG は保存拡大であるため、これらの定理は真のクラスに関するものでなければならない。例えば、大域選択公理は 真のクラス V は整列可能であり、どの真のクラスも V と一対一対応することを含意するが、これは NBG の定理である。[注釈 27]
保存拡大の帰結の一つは、 ZFC と NBG が無矛盾性同値であることである。 この証明には爆発原理(矛盾からは、何でも証明可能である)を用いる。 ZFC か NBG のいずれかが無矛盾でないと仮定する。すると無矛盾でない理論は集合に関する、矛盾 する表現 ∅ = ∅ かつ ∅ ≠ ∅ を含意する。保存拡大の特性から、もう一方の理論もこれらの表現を含意する。したがって、こちらも無矛盾ではない。ゆえに、 NBG はより表現的であるものの、 ZFC と無矛盾性同値なのである。この結果とフォン・ノイマンの1929年の相対的無矛盾性の証明を合わせると、彼の1925年の公理系にサイズ制限公理を加えたものが ZFC と無矛盾性同値であることが含意される。ZFCはカントール集合論のフレームワークに含まれるため、この事実は完全にこの強力な公理の相対的無矛盾性に関するフォン・ノイマンの懸念を払拭するものである。
NBG は ZFC の保存拡大であるものの、定理は NBG のほうが ZFC より短くエレガントに証明可能である(逆もしかり)。この側面について知られている結果の調査結果は Pudlák 1998 を参照。
モース=ケリー集合論は、量化子の範囲がクラスである論理式を含むクラス内包公理図式を有する。MK は NBG の無矛盾性を証明できるため、 NBG より強力な理論である一方、[76]ゲーデルの第二不完全定理から NBG は NBG自身の無矛盾性を証明できない。
NBG に関する存在論的な議論や哲学的な問題、特に ZFC と MK との比較については、Potter 2004の Appendix C を参照。
モデル
ZFC、NBG、MKは累積的階層 Vα および 構成可能階層 Lα の言葉で表現可能なモデルを持つ。 V は到達不能基数 κ を含み、 X が X ⊆ Vκ であると仮定して、 Def(X) は X のパラメータによる1次の定義可能部分集合のクラスを表すとする。記号として "
カテゴリ
- ノイマン=ベルナイス=ゲーデル集合論のページへのリンク