正八面体
(regular octahedron から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/07/21 01:05 UTC 版)
正八面体 | |
---|---|
![]() ![]() | |
種別 | 正多面体、デルタ多面体、八面体 |
面数 | 8 |
面形状 | 正三角形 |
辺数 | 12 |
頂点数 | 6 |
頂点形状 |
3, 3, 3, 3 34 ![]() |
シュレーフリ記号 | {3, 4} |
ワイソフ記号 | 4 | 2 3 |
対称群 | Oh |
双対多面体 | 正六面体 |
特性 | 凸集合 |
正八面体(せいはちめんたい、英: regular octahedron)とは、正多面体の一種であり、8枚の正三角形から成り立つ立体である。
正多面体のひとつの正六面体のすべての頂点まわりを各面の中心まで切頂することによって得られる。(双対関係)
正四面体の各頂点を辺の中心まで切り落とした形でもある。
性質
- 双四角錐、反三角柱の特殊な形。
- 向かい合う面は平行である。
- 展開図の数は11種類。
- 星形化すると星型八面体となる。
- 面の数は8、辺の数は12、頂点の数は6。これらはパスカルのピラミッドの第4段(Layer 3)の三角形の各段の数字の総和に等しい。反対側の面の中心同士を結ぶ線に沿って見た場合、面、辺、頂点は各段の数字通りのグループに分割される。
- 頂点形状は正方形であり、4本の辺と4枚の正三角形が集まる。これらはパスカルのピラミッドの第3段(Layer 2)の三角形の各段の数字の総和に等しい。
- 単独で空間充填は出来ないが、正四面体と組み合わせた空間充填は可能である。
- 下図に示すように、正六面体と双対である。
![]() ![]() ![]() 正六面体との双対関係 |
計量
面の面積 | ![]() 頂点と辺が共通となる立体ジョンソンの立体その他
関連項目外部リンク
「regular octahedron」の関連用語
検索ランキング
regular octahedronのページの著作権
ビジネス|業界用語|コンピュータ|電車|自動車・バイク|船|工学|建築・不動産|学問
©2025 GRAS Group, Inc.RSS |